

Bedienungsanleitung Technische Parameter

multilog 2

LightExpert

Netzanalysator für Nieder-, Mittelund Hochspannungsnetze

One System. Best Solutions.

Hinweis

Bitte beachten Sie, dass die vorliegende Betriebsanleitung nicht in jedem Fall den aktuellsten Bezug zum Gerät darstellen kann. Wenn Sie beispielsweise die Firmware des Gerätes per Internet in Richtung einer höheren Firmware-Version verändert haben, passt unter Umständen die vorliegende Beschreibung nicht mehr in jedem Punkt. In diesem Fall sprechen Sie uns entweder direkt an oder verwenden Sie die auf unserer Internetseite (www.kbr.de) verfügbare aktuellste Version der Betriebsanleitung.

Putty + Gausmann GmbH

Kiebitzheide 39 D-49084 Osnabrück Telefon: +49 (0)541 951 930 0 Telefax: +49 (0)541 951 930 29 E- Mail: info@putty-gausmann.de Internet: www.putty-gausmann.de

Die Firma Putty + Gausmann GmbH übernimmt keine Haftung für Schäden oder Verluste jeglicher Art, die aus Druckfehlern oder Änderungen in dieser Bedienungsan-leitung entstehen.

Ebenso wird von der Firma Putty + Gausmann GmbH keine Haftung für Schä-den und Verluste jeglicher Art übernommen, die sich aus fehlerhaften Geräten oder durch Geräte, die vom Anwender geändert wurden, ergeben.

Putty + Gausmann GmbH © KBR GmbH Technische Änderungen bleiben vorbehalten

Inhaltsverzeichnis

1.	Benutzerführung	6
1.1	Warnhinweise	6
1.2	Hinweise	6
1.3	Weitere Symbole	6
2.	Lieferumfang/Bestellmerkmale	7
2.1	Lieferumfang	7
2.2	Bestellmerkmale	7
3.	Sicherheitshinweise	10
4.	Technische Daten	11
4.1	multilog 2	11
4.2	Zubehör Stromzangen	13
4.2.1	Rogowski- Spulen	13
4.2.2	Stromzangen	14
4.2.3	Zubehör Strommessung	15
5.	Bestimmungsgemäßer Einsatz	15
6.	Beschreibung	15
7	Betrieb/Bedienung	16
7.1	multilog 2	16
7.1.1	Übersicht multilog 2	16
7.1.2	Direkter Anschluss am 3-phasigen Niederspannungsnetz direkt	17
7.1.3	Anschluss am 1- phasigen Niederspannungsnetz direkt	
7.1.4	Anschluss an Sekundärwandlern	19
7.1.5	Display	20
7.1.6	Messung starten	22
7.1.7	Manueller Trigger	22
7.1.8	Zeitsynchronisation via RS232 Schnittstelle	23
7.1.9	Setup multilog 2	23
7.1.10	Datum, Uhrzeit, Sprache	25
7.1.11	Tastensperre	26
7.1.12	Speicherverwaltung	26
8.	Auswertesoftware WinPQ mobil	27
8.1	SW – Installation / Deinstallation / Update	27
8.2	Startbildschirm WinPQ mobil	29
8.2.1	Allgemeine Einstellung der Software	
8.2.2	Laden der Messdaten vom Messgerät multilog 2 auf den PC	34
8.2.3	Datenordner im Windows-Explorer	
8.3.4	Laden der Messdaten bei laufender Messung	
8.3	Auswertung von Messdaten	
8.3.1	Verzeichnis der Messdaten ändern	

8.3.2	Normauswertung nach EN50160 und IEC61000-2-2	40
8.4	Balkendiagramm der Harmonischen und Interharmonischen	45
8.4.1	Bewertung der Stromharmonischen nach D-A-CH-CZ	48
8.4.2	Pegel-Zeit-Diagramme der Langzeitdaten	49
8.4.3	Oszilloskop-Aufzeichnungen	56
8.4.4	10 ms-RMS Störschriebe	58
8.4.5	Rundsteuer-Rekorder	59
8.4.6	PQ Ereignisse	60
8.4.7	Datenexport – Intervalldaten	62
8.4.8	Zusatzfunktionen	65
9.	Grenzwerte und Einstellungen multilog 2	67
9.1	Setup - Grundeinstellungen	68
9.1.1	Größe der Messdaten	70
9.2	Setup – Grenzwerte EN50160 / IEC61000-2-2 / IEC61000-2-4	74
9.3	Triggereinstellungen Oszilloskopbild	75
9.4	10ms Effektivwert-Rekorder	77
9.5	Firmwareupdate multilog 2	78
9.6	Lizenzupdate multilog 2	78
9.7	Data Converter	79
10.	Online-Analyse: multilog 2 & PC	81
10.1	Online - Oszilloskopbild	81
10.2	Online – FFT - 5.000 Hz	82
10.3	Online - Harmonische	84
10.4	Online - Zwischenharmonische	85
10.5	Online – Richtung der Harmonischen	86
10.6	Online Pegel-Zeitdiagramm	87
10.7	Online - Details Messwerte	
10.8	Online - Zeigerdiagramm	89
10.9	Leistungsdreieck	90
11.	Messdaten – Messverfahren multilog 2	91
11.1	Messverfahren / Formeln multilog 2	95
12.	Wartung / Reinigung	
13.	Normen und Gesetze	
14.	Entsorgung	
15.	Produktgewährleistung	

1. Benutzerführung

1.1 Warnhinweise

Abstufung der Warnhinweise

Warnhinweise unterscheiden sich nach der Art der Gefahr durch folgende Signalworte:

- Gefahr warnt vor einer Lebensgefahr
- Warnung warnt vor einer Körperverletzung
- Vorsicht warnt vor einer Sachbeschädigung

Aufbau der Warnhinweise

Art und Quelle der GefahrSignalwort	
-------------------------------------	--

1.2 Hinweise

 $oxed{i}$ Hinweis zum sachgerechten Umgang mit dem Gerät

1.3 Weitere Symbole

Handlungsanweisungen

Aufbau der Handlungsanweisungen: ∛ Anleitung zu einer Handlung. ■ Resultatsangabe falls erforderlich.

Listen

Aufbau nicht nummerierter Listen: • Listenebenen 1 - Listenebene 2 Aufbau nummerierter Listen: 1) Listenebene 1

2) Listenebene 1

- 1. Listenebene 2
- 2. Listenebene 2

2. Lieferumfang/Bestellmerkmale

2.1 Lieferumfang

- multilog 2
- Bedienungsanleitung
- Koffer
- 3 rote Delphinklemmen, 1 blaue Delphinklemme, 1 grüne Delphinklemme
- 3 Sicherungsabgriffe
- USB Kabel

2.2 Bestellmerkmale

Drei Messfunktionen sind für das multilog 2 erhältlich:

multilog 2 Light

- Gerätevariante dient für Leistungsanalysen und Spannungsqualitätsanalysen nach EN50160 IEC61000-2-2 oder IEC61000-2-4.

multilog 2 expert

- Gerätevariante mit umfangreichen Triggerfunktionen dient zum Aufzeichnen von Oszilloskopbildern und 10 ms- Effektivwerten.

multilog 2 Light oder expert mit Rundsteuersignalanalyse

- Gerätevariante dient zum triggern und Aufzeichnen von Rundsteuersignalen.

Mit einem Lizenzcode ist das nachträgliche Aufrüsten des multilog 2 möglich.

		berd . Seemann Smen	
Merkmal			
Störschreiber und Netzanalysator nach DIN EN 50160 und IEC 61000-3-40 Klasse A Mobiler Power-Quality-Netzanalysator und Leistungsmesser für Nieder-, Mittel- und Hochspannungs- netze nach DIN EN-50160/IEC 6100-4-30 Klasse A			
2 GByte Flash- Speicher			
USB Schnittstelle			
Display			
IP65			
unterbrechungsfreier Stromversor	gung		
USB-Kabelset			
Anschlusskabel für Spannung			
2 Versorgungsleitungen			
5 Delphinklemmen			
3 Sicherungsadapter mit Hochleis	tungssicherungen		
Koffer für Stromzangen und Messl	eitungen incl. Auswertesoftware		
Ausführung			
multilog 2 Light			
multilog 2 expert			
Betriebsanleitung und Display			
deutsch	deutsch spanisch tschechisch		
englisch	italienisch	russisch	
französisch	niederländisch	polnisch	
Upgrades			
Upgrade der Version "light" auf "ex	spert"		
Upgrade Rundsteuer-Rekorder			
Zubehör			
Netz-Adapterstecker für Steckdose	en 1~; 4mm Sicherheitsstecker		
Kalibrierset für PQ-Box 100/200; K	alibriersoftware und Adapterbox		
Silex Box, SX-3000GB; USB zu TCP-IP Konverter			
Magnet-Spannungsabgriffe Set			
GPS Funkuhr – 230V			
CAT-Booster (600V CAT IV) Spannungswandlerbox			
Spannungsabgriff an isolierten Kabel; Kontaktträger 1~, Anschluss für 35-240mm ²			
Kabelsatz, 4-polig, 1,5mm ² , 2m lar	Kabelsatz, 4-polig, 1,5mm ² , 2m lang, 4x Sicherung 16A, 4x 4mm Sicherheitsstecker		
Lemp Gummischutzhülle für Haus	anschlusskästen		

Messgrößen / Funktionen		
multilog 2	light	expert
Statistik nach EN50160 / IEC61000-2-2; -2-4	х	х
PQ Ereignisse	х	х
Aufzeichnung freies Intervall:	х	х
Spannung: Mittel-, Min,- Max-Wert	х	х
Strom: Mittel-, Min-, Max-Wert	x	х
Leistung: P, Q, S, PF, cos phi, sin phi	х	х
Verzerrungsblindleistung D	х	х
Energie: P, Q, P+, P-, Q+, Q-	х	х
Flicker (Pst, Plt, Ausgang 5)	х	х
Unsymmetrie	x	х
Spannungsharmonische	bis 50.	bis 50.
Stromharmonische	bis 50.	bis 50.
Phasenwinkel der Harmonischen	bis 50.	bis 50.
THD U und I; PWHD U und I; PHC	x	х
Zwischenharmonische-Gruppen Spannung, Strom	DC bis 5kHz	DC bis 5kHz
Rundsteuersignal	х	х
Frequenz	х	х
15 (30) Min Leistungswerte P, Q, S, D, cos phi, sin phi	х	х
Online Modus:		
Oszilloskopbild	х	х
10ms Effektivwertrekorder	х	х
Spannungs- Stromharmonische	x	х
Zwischenharmonische Gruppen (U, I)	x	х
Richtung der Harmonischen	х	х
Triggerfunktionen (Rec A / Rec B)		
Manueller Trigger über Taste	х	х
Effektivwert-Trigger Unter- Überschreitung (U, I)		х
Effektivwert-Trigger Sprung (U, I)		х
Phasensprungtrigger		х
Hüllkurventrigger		х
Automatik Trigger		x
Option Rundsteueranalyse Rekorder - Optional	x	x

3. Sicherheitshinweise

- 🖑 Bedienungsanleitung beachten.
- 🖑 Die Bedienungsanleitung immer beim Gerät aufbewahren.
- 🖑 Sicherstellen, dass das Gerät ausschließlich in einwandfreiem Zustand betrieben wird.
- ♥ Das Gerät niemals öffnen.
- 🖑 Sicherstellen, dass ausschließlich Fachpersonal das Gerät bedient.
- 🖑 Das Gerät ausschließlich nach Vorschrift anschließen.
- 🖑 Sicherstellen, dass das Gerät ausschließlich im Originalzustand betrieben wird.
- 🖑 Das Gerät ausschließlich mit empfohlenem Zubehör betreiben.
- Sicherstellen, dass das Gerät nicht über den Bemessungsdaten betrieben wird. (Siehe technische Daten)
- 🖑 Sicherstellen, dass das Original Zubehör nicht über den Bemessungsdaten betrieben wird.
- Bei Messungen in kurzschlussfesten Systemen, sicherstellen, dass Spannungsabgriffe mit integrierten Sicherungen verwendet werden.
- 🖑 Das Gerät nicht in Umgebungen betreiben, in denen explosive Gase, Staub oder Dämpfe vorkommen.
- 🖑 Das Gerät ausschließlich mit handelsüblichen Reinigungsmitteln reinigen.

4. Technische Daten

4.1 multilog 2

Spannungsbereich der Spannungsmesskanäle L1, L2, L3, N, E	0-400 V AC (570V DC) Leiter-Erde(L-E) 0-690 V AC (980V DC) Leiter-Leiter (L-L)
Spannungsbereich der Versorgungsleitungen Sw- Sw	100-280 V AC 140-240 V DC
Spannungsbereich der Strommesskanäle - Ministrom-Zangen & freies Anschlusskabelset - Rogowski-Spulen	230 mV RMS, für Geräte bis 12/2010 700 mV RMS, 1000 mV DC, für Geräte ab 01/2011 280 mV RMS
Datenspeicher	SD-Karte 2 GByte
Schnittstellen - USB 2.0 - RS232	10 Mbyte/min Zum Anschluss einer DCF Synchronisationseinheit
Display	Beleuchtet, 6 Zeilen á 30 Zeichen
Abmessungen	220 x 146 x 57 mm
Leistungsaufnahme	< 10 VA; <7 W (ohne Displaybeleuchtung; 230 V)
Schutzart	IP65
Messverfahren	IEC 61000-4-30; Klasse A
Temperaturbereich	Betrieb: -20 °C 60 °C Lagerung: -30 °C 70 °C
USV	NiMH Akku 9,6 V (20 Sekunden)
Isolationskategorie	CAT IV / 300V L-E (CAT III/ 600 V L-E)

Umsetzer	24 Bit A/D
Eingangsbürde der Spannungsmesskanäle	1 MΩ
Genauigkeit Strommesskanäle	
- 0.85 mV ≤ Ue < 5 mV	0.01 % vom Endwert
- 5 mV ≤ Ue < 50 mV	1 % vom Messwert
- 50 mV ≤ Uc ≤ 700 mV	0,2% vom Messwert
Spannungsmessgröße	Fehlergrenzen nach IEC 61000-4-30, Class A
Grundschwingung : r.m.s.	±0.1% von U _{din} über 10% ~ 150% von U _{din}
Grundschwingung : Phase	$\pm 0.15^{\circ}$ über 50% ~ 150% von U _{din} über f _{norm} $\pm 15\%$
Harmonische 2 50	\pm 5% der Anzeige über U _m = 1% ~ 16% von U _{din} \pm 0.05% von U _{din} über U _m < 1% von U _{din}
Zwischenharmonische 2 49	$\pm 5\%$ der Anzeige über U _m = 1% ~ 16% von U _{din} $\pm 0.05\%$ von U _{din} über U _m < 1% von U _{din}
Frequenz	\pm 5mHz über f _{norm} \pm 15% (f _{norm} = 50 Hz / 60 Hz)
Flicker, Pst, Plt	$\pm 5\%$ der Anzeige über 0.02% ~ 20% von Δ U / U
Dip-Restspannung	$\pm 0.2\%$ von U _{din} über 10% ~ 100% von U _{din}
Dip-Dauer	±20 ms über 10% ~ 100% U _{din}
Swell-Restspannung	±0.2% von U _{din} über 100% ~ 150% von U _{din}
Swell-Dauer	±20 ms über 100% ~ 150% von U _{din}
Unterbrechungsdauer	±20 ms über 1% ~ 150% von U _{din}
Spannungsunsymmetrie	±0.15% über 1% ~ 5% der Anzeige
Rundsteuerspannung	$\begin{array}{l} \pm 5\% \mbox{ der Anzeige über } U_m = 3\% \sim 15\% \mbox{ von } U_{din} \\ \pm 0.15\% \mbox{ von } U_{din} \mbox{ über } U_m = 1\% \sim 3\% \mbox{ von } U_{din} \end{array}$

4.2 Zubehör Stromzangen

4.2.1 Rogowski- Spulen

Rogowskistromzangenset 4~: V199-03-0005

Durchmesser = 194 mm; Spulenkörper Durchmesser = 9,9 mm

Rogowskistromzangenset 4~: V199-03-0006

Durchmesser = 290 mm; Spulenkörper Durchmesser = 9,9 mm

info

Typ V199-03-0006 6000 A Messbereich

Verstellen des Stromwandlerfaktors auf x2

Modell V199-03-0005 Pro Flex 3000 4~		V199-03-0006 Pro Flex 6000 4~	
Strombereich	3.000 A AC RMS	6.000 A AC RMS	
Messbereich	0-3300 A AC RMS	0-6.600 A AC RMS	
Ausgangsspannung	85 mV / 1000A	42,5 mV / 1000 A	
Frequenzbereich	1 Hz bis 20 kHz	10 Hz bis 20 kHz	
Typ Isolationsspannung	600V AC / DC CAT IV	600 V AC / DC CAT IV	
Genauigkeit 20° (50 Hz)	-<50 A/0,1 % v.E. -50-3000 A/1,5 % v.M.	-<100 A/0,1 % v.E. -100-6000 A/1,5 % v.M.	
Winkelfehler (45-65 Hz)	-<50 A/2,5 ° -50-3000 A/1 °	-<100 A/2,5 ° -100-6000 A/1 °	
Positionsgenauigkeit	-<50 A/0,2 % v.E. -50-3000 A/1,5 %v.M.	-<100 A/0,1 % v.E. -100-6000 A/1 %v.M.	
Länge Rogowski- Spule	610 mm	910 mm	
Anschlusskabellänge	2 m	2 m	

Mini-Rogowskistromzangenset 4~

Messbereich: 2A bis 1500A RMS; Fehlergrenze: 1% Rogowskizangenkopf: Länge = 400 mm; Durchmesser = 125 mm; Spulenkörper Durchmesser = 8,3 mm Frequenzbereich: 10Hz bis 20 KHz

4.2.2 Stromzangen

Die Mu-Metall-Zangen sind speziell für Messungen an Sekundärwandlern in MS- oder HS-Netzen geeignet. Sie kombinieren eine sehr hohe Genauigkeit mit einem kleinen Winkelfehler.

Mu-Metall Ministromzangen 4~: V199-03-0009

Modell	20A Messbereich	200A Messbereich
Strombereich	23 A AC RMS	200 A AC RMS
Messbereich	100 mA bis 23 A RMS	5 A bis 200 A RMS
Ausgangsspannung	10 mV/A	1 mV / A
Frequenzbereich	40 Hz bis 20 kHz	40 Hz bis 20 kHz
Typ Isolationsspannung	600 V AC	600 V AC / DC
Genauigkeit	100 mA- 10 A/1,5 % v.M.	10-40 A/<2 % v.M.
	10-20 A/1 % v.M.	40-100 A/<1,5 % v.M.
	>20 A/0,5 % v.M.	100-200 A/<1 % v.M.
Winkelfehler	100 mA- 10 A/0,5 °	10-40 A/<2 °
	10-20 A/0,5 °	40-100 A/<1,5 °
	>20 A/0,5 °	100-200 A/<1 °

info 200 A Messbereich

♥ Verstellen des Stromwandlerfaktors auf x10

AC/DC Stromzange 1~: V199-03-0010

AC/DC Hallsensorzangen Set inkl. Netzteil und 2 Stück 4 mm Adapterstecker Strombereiche umschaltbar 60 A/600 A

Modell	AC/DC 60 A	AC/DC 600 A
Strombereich	60 A AC/DC RMS	600 A AC/DC RMS
Messbereich	200 mA bis 60 A RMS	0 bis 600 A RMS
Ausgangsspannung	10 mV / A	1 mV / A
Frequenzbereich	DC bis 10 kHz	DC bis 10 kHz
Typ Isolationsspannung		
Genauigkeit	-0,5-40 A/<1,5 % +5 mV -40-60 A/1,5 %	-0,5-100 A/<1,5 % +1 mV -100-400 A/<2 % -400-600 A(nur DC)/<2,5 %
Winkelfehler	-10-20 A/<3 ° -20-40 A/<2,2 °	-10-300 A/<2,2 ° -300-400 A/<1,5 °

600 A Messbereich (AC/DC)

Verstellen des Stromwandlerfaktors auf x10

4.2.3 Zubehör Strommessung

Feies Adapterkabelset für Zangen: V199-03-0007

Feies Anschluss-Kabelset für 4 Stromzangen oder Shunt mit 4 mm Sicherheitsbuchsen.

Beschädigung des Geräts durch externe Stromzangen

- 🖑 Vermeidung von Stromzangen mit A oder mA-Ausgang
- 🖑 Vermeidung von Eingangsspannungen der Stromeingänge über 30V

^{info} Stromwandlerfaktor

🖑 Korrektur des Stromwandlerfaktors; die Grundeinstellung beträgt 1A/10mV

5. Bestimmungsgemäßer Einsatz

Das Produkt dient ausschließlich zur Messung und Bewertung von Spannungen und Strömen.

6. Beschreibung

Der Netzanalysator multilog 2 ist für Analysen in Nieder-, Mittel- und Hochspannungsnetzen geeignet. Er entspricht allen Anforderungen der Messgerätenorm IEC61000-4-30 der Klasse A. Funktionen:

- Spannungsqualitätsmessungen nach EN50160, IEC61000-2-2 und IEC61000-2-4 für Nieder- und Mittelspannungsnetze
- Störschreiberfunktionen (Version "Expert")
- Lastanalysen; Energiemessungen
- Rundsteuersignalanalysen

- 7 Betrieb/Bedienung
- 7.1 multilog 2
- 7.1.1 Übersicht multilog 2

- 1) Stromzangenanschluss (Stecker 7- polig)
- 2) Spannungseingänge fest angeschlossen:
 - L1 (rot + Beschriftung L1) L2 (rot + Beschriftung L2) L3 (rot + Beschriftung L3) N (blau + Beschriftung N) Erde (grün + Beschriftung E) Versorgung (schwarz + schwarz)
- 3) RS232-Schnittstelle (Zeitsynchronisation)
- 4) Tasten:
 - 1. Start/Stop (oben)
 - 2. Manueller Trigger
 - 3. Display blättern
 - 4. Setup ändern (unten)

7.1.2 Direkter Anschluss am 3-phasigen Niederspannungsnetz direkt

Beschädigung des multilogs durch Unter- und Überspannung

- 🖑 Gerät ausschließlich zwischen 100 und 280 V AC mit Spannung versorgen.
- The second secon
- Versorgen Sie das Gerät nicht direkt von stark gestörten Spannungen. (z. B. am Frequenzumrichterausgang / Vorsicht bei hohen Taktfrequenzen)

Beschädigung des multilogs durch Kurzschlüsse

Bei Messungen in kurzschlussfesten Systemen, sicherstellen, dass Spannungsabgriffe mit integrierten Hochlastsicherungen verwendet werden.

Sicherungsadapter

Nutzen Sie pro Phase einen Sicherungsadapter mit Hochlastsicherung. Die Energieversorgung für das Netzteil (schwarze Leitung) kann auf die Messleitung gestapelt werden. Somit sind Kurzschlüsse auf den Leitungen sowie im Messgerät abgesichert.

Anschluss in einem 3-Phasen, 4 Leiter- Drehstromnetz

Spannungsanschlüsse

- Sicherstellen, dass bei jeder Messung E angeschlossen ist.
- Wenn kein PE Anschluss vorhanden, Anschlüsse E und N verbinden.
- Sicherstellen, dass Schaltungsart (4-Leiter) eingestellt ist.

7.1.3 Anschluss am 1- phasigen Niederspannungsnetz direkt

Beschädigung des multilogs durch Unter- oder Überspannung

🖑 Gerät ausschließlich zwischen 100 und 280 V AC mit Spannung versorgen.

🖑 Gerät ausschließlich zwischen 140 und 240 V DC mit Spannung versorgen.

Beschädigung des multilogs durch durch Kurzschlüsse

Bei Messungen in kurzschlussfesten Systemen, sicherstellen, dass Spannungsabgriffe mit integrierten Hochlastsicherungen verwendet werden. (Sicherungsadapter).

Sicherungsadapter

Nutzen Sie pro Phase einen Sicherungsadapter mit Hochlastsicherung. Die Energieversorgung für das Netzteil (schwarze Leitung) kann auf die Messleitung gestapelt werden. Somit sind Kurzschlüsse auf den Leitungen sowie im Messgerät abgesichert.

Anschluss für 1-phasige Messungen

Spannungsanschlüsse

- Sicherstellen, dass bei jeder Messung E angeschlossen ist.
- Wenn kein PE Anschluss vorhanden, Anschlüsse E und N verbinden.
- Sicherstellen, dass Schaltungsart (1-Leiter) eingestellt ist.
- Messleitungen L2 und L3 müssen nicht angeschlossen werden in Einstellung 1-Leiter Netz.

7.1.4 Anschluss an Sekundärwandlern

Beschädigung des multilogs durch Unter- oder Überspannung

🖑 Gerät ausschließlich zwischen 100 und 280 V AC mit Spannung versorgen.

🖑 Gerät ausschließlich zwischen 140 und 240 V DC mit Spannung versorgen.

Spannungsanschlüsse

- Sicherstellen, dass bei jeder Messung E angeschlossen ist.
- Wenn kein PE Anschluss vorhanden, Anschlüsse E und N verbinden.
- Wandlerfaktor der Spannung einstellen.
- Wandlerfaktor der Ströme einstellen.
- Sicherstellen, dass Schaltungsart (3-Leiter) eingestellt ist.

Die Spannungsversorgung des multilog 2 sollte nicht über den Spannungswandler geschehen. Das interne Schaltnetzteil des multilog 2 würde an der Impedanz des Wandlers Harmonische erzeugen.

Besondere Schaltungsarten

Konfigurationen wie V-Schaltung oder Aron-Schaltung können parametriert werden.

V-Schaltung (Parametrierung über die Auswertesoftware, Gerätesetup)
 Aron-Schaltung (Parametrierung über die Auswertesoftware, Gerätesetup)

7.1.5 Display

🖑 Durch Drücken der Taste

wechselt die Seite des Displays.

Display Seite 1

- 1) Aufzeichnung On/Off
- 2) Aktuelle Messwerte (1 sec. Mittelwerte)
- 3) Aktuelle Aufzeichnungsdauer
- 4) Freier Speicher im Gerät

^{info} Anzeige der Strommesswerte im Display

Im Display werden 0.00A angezeigt wenn folgende Stromwerte unterschritten werden.

- < 10mA bei 20A Ministromzangen
- < 1A bei 3000A Rogowskizangen

Display Seite 2

Rec. = OFF free Memory:	0d 00:00:00 487MB
Oscilloscope Rec.	0
RMS Recorder	0
Signal voltage	0
PQ events	0

Anzeige aller PQ-Ereignisse und Rekorder. im Aufzeichnungszeitraum

Display Seite 3

Rei	c. = OFF e Memory:	0d 00:00:00 487MB
P1	+0.000 W	Q1+0.000 VAR
PZ	+0.000 W	Q2+0.000 VAR
P3	+0.000 W	Q3+0.000 VAR
P	+0.000 W	Q +0.000 VAR

Anzeige der Wirkleistung und Blindleistung mit Vorzeichen (einzelne Phasen, Summe)

Display Seite 4

Ref	c. = OFF e Memory:	0d 00:00:00 487MB
\$1	0.000 VA	PF 1.000 %
S2	0.000 VA	PF 1.000 %
\$3	0.000 VA	PF 1.000 %
S	0.000 VA	PF 1.000 %

■ Anzeige der Scheinleistung und des Leistungsfaktors (einzelne Phasen, Summe).

Display Seite 5

Rec. = OFF	0d 00:00:00			
free Memory:	487MB			
THD U1 0.000 % THD U2 0.000 % THD U3 0.000 %	THD11 0.000 % THD12 0.000 % THD13 0.000 % THD1N 0.000 %			

Anzeige des THD von Spannung und Strom (einzelne Phasen, Neutralleiter).

Display Seite 6

29.08.2008 12:47:35 EXPERT+S	DCF:no 487MB
BOOT-Version	0.000
MCU-Version	1.104
DSP-Version	1.205
Serial number	0823-101

Anzeige von Datum, Uhrzeit, Geräteversion, aktuelle Firmwareversion und Zeitsynchronisation.

■ Nach erneutem Wechsel der Displayseiten, erscheint wieder Displayseite 1.

7.1.6 Messung starten

V Durch Drücken der Taste

Messung starten bzw. stoppen.

^{info} Für eine positive Anzeige der Wirkleistung

Sicherstellen, dass die Pfeile des Zubehörs zur Strommessung in Richtung Verbraucher zeigen.

7.1.7 Manueller Trigger

* Durch Drücken der Taste
Trigger auslösen.

■ Festhalten der aktuellen Spannungen und Ströme mit Oszilloskop-Rekorder und 10ms-RMS-Rekorder. Die Rekorderlänge ist von der eingestellten Rekorderkonfiguration in der Software abhängig.

Rec. = OFF free Memory:	0d 00:00:00 487MB	1
Oscilloscope Rec.	0	•
RMS Recorder	0	2
PQ events	ō	

1) Die Anzahl der Aufzeichnung des Oszilloskops erhöht sich um 1.

2) Die Anzahl der Aufzeichnung des Effektivwerts erhöht sich um 1.

Der manuelle Trigger reagiert sofort. Die zahl im Display erhöht sich erst nachdem der Schrieb auf der SD-Karte gespeichert wurde.

Beispiel für Anwendung manueller Trigger:

Netzrückwirkungen eines Verbrauchers im Netz bewerten:

- 🖑 Vor Start des Verbrauchers, manuellen Trigger betätigen.
- 🖑 Nach Start des Verbrauchers, manuellen Trigger betätigen.

Es ist möglich, alle Bilder und das zugehörige Frequenzspektrum in der Software zu vergleichen. Die Bilder geben Aufschluss über Netzrückwirkungen.

7.1.8 Zeitsynchronisation via RS232 Schnittstelle

- RS232-Schnittstelle ist standartmäßig für den Anschluss eines DCF77- oder GPS-Empfänger vorgesehen.
- Automatische Synchronisation des Messgeräts nach Anschluss des Empfängers. Bei fehlender Synchronisation läuft das multilog 2 mit einer internen Quarzuhr.

29.08.2008 12:47:35 EXPERT+S	DCF:no 487MB
BOOT-Version	0.000
MCU-Version	1.104
DSP-Version	1.205
Serial number	0823-101

1) DCF Status

7.1.9 Setup multilog 2

■ Displayseite wechselt auf Hauptmenü.

- 1) Parameter der Netzdaten ändern
- 2) Wechselt eine Displayebene zurück.

Parameter	Netzform	Netzfo	rm		4 Leiter
		4	Lei	ter	3 Leiter
	blättern			_	
	zurück			5	zurück

- 1) Nennspannung bezieht sich auf die vertraglich vereinbarte Leiter- Leiter- Spannung. Sämtliche Rekorder beziehen sich prozentual auf diesen Wert. Für die Niederspannung gilt: 400V.

 - $\overset{\text{\tiny{(1)}}}{\to}$ Ab \rightarrow niedriger

2) Messintervall frei einstellbar: 1s -60min (Grundeinstellung = 10min) Einstellungen < 1 min sollten nur für kurze Messungen verwendet werden.

- 3) Wandlerfaktor (knu) entspricht Verhältnis zwischen Primär- und Sekundärspannung.
- 4) Wandlerfaktor (kni) entspricht Verhältnis zwischen Primär- und Sekundärstrom.
- 5) Auswahl zwischen 3- und 4 Leiternetz.

In einem 3 Leiternetz werden alle Bewertungen der Norm EN50160 aus den Leiter-Leiter Spannungen berechnet.

In einem 4 Leiternetz werden alle Bewertungen der Norm EN50160 aus den Leiter- Erde Spannungen ermittelt.

7.1.10 Datum, Uhrzeit, Sprache

- ∜Uhrzeit drücken.
- → Uhrzeit kann verändert werden.
- [™]Datum drücken.
- → Datum kann verändert werden.
- 🖑 blättern drücken.
- → Sprache kann verändert werden.

7.1.11 Tastensperre

♥ Anschließend >5 sec gedrückt halten.

→ Tastensperre inaktiv.

Bei aktivierter Tastensperre ist es möglich, die Displayseiten zu wechseln und Messwerte einzusehen. Das Setup ist gesperrt.

7.1.12 Speicherverwaltung

Damit bei einem zu empfindlich oder falsch eingestellten Triggerpegel, die Rekorderdaten nicht den kompletten Speicher füllen und somit die Langzeitaufzeichnung angehalten wird, reserviert das multilog 2 am Anfang der Messung maximal 50% des freien Speichers oder maximal 300MB für Störschriebe. Wird diese Speichergröße erreicht, so ist dies im Display mit einem * hinter der Anzahl der Störschriebe zu erkennen.

z.B. Anzeige: Oszilloskoprekorder = 1312*

Werden keine Störschriebe getriggert, so verwendet das multilog 2 den kompletten Speicher für die Aufzeichnung der Langzeitdaten.

Ist der Speicher voll, erscheint im Display die Meldung "Speicher voll"

Eine einzelne Messung ist auf einen Maximalwert von 690MB limitiert. Es können aber mehrere Messungen den gesamten Speicher von 2GB füllen.

Speicher löschen

♥ gleichzeitiges Drücken von

→ delete Memory?

🖑 Yes

→ Speicher wird gelöscht.

8. Auswertesoftware WinPQ mobil

Die Auswertesoftware WinPQ mobil unterstützt den mobilen Netzanalysator multilog 2. Sie wurde in Zusammenarbeit mit Energieversorgungsunternehmen mit dem Ziel entwickelt, eine einfach zu bedienende und adaptierbare Lösung für die Bewertung von Netzqualitätsparametern in Energieverteilungsnetzen zu schaffen.

Der Netzanalysator ist für Power Quality Messungen in Nieder-, Mittel- und Hochspannungsnetzen geeignet.

Anliegen des Programms ist es, die archivierten Power-Quality-Messdaten und Störschriebe für den Betrachter aufzubereiten und auf dem Bildschirm des PCs in geeigneter Weise darzustellen. Zu diesem Zweck bietet das Programm Werkzeuge für die effiziente Auswahl gespeicherter Daten, eine Reihe von grafischen und tabellarischen Darstellungsformen mit den Kenngrößen der Spannungsqualität nach Europanorm EN50160, der IEC61000-2-2 oder der Norm für Industrienetze IEC61000-2-4.

- ✓ Automatische Berichterstellung nach den Verträglichkeitspegeln der EN50160, IEC61000-2-2 oder IEC61000-2-4
- ✓ Information über Störungen im Netz mittels Störschrieben
- ✓ Verwaltung vieler Messungen
- ✓ Datenerfassung von Langzeitdaten und Ereignissen
- ✓ Statistische Langzeitanalysen
- ✓ Korrelation von Ereignissen und unterschiedlichen Messdaten
- ✓ Bedienerfreundliche, anwenderorientierte Auswertung

8.1 SW – Installation / Deinstallation / Update

Systemvoraussetzungen:

Betriebssystem: Microsoft Windows XP (Service Pack 2) Microsoft Windows NT Microsoft Windows 7 (32bit & 64bit) Microsoft Windows 8

Arbeitsspeicher mind. 1 GByte (Windows 7 mind. 2 GByte)

Die Software WinPQ mobil steht als 32bit und 64bit Version kostenfrei zur Verfügung.

Installation der Auswertesoftware:

Zum Starten der Installation der Auswertesoftware legen Sie die Installations-CD in Ihr CD-ROM-Laufwerk. Bei aktivierter Autostart-Funktion startet das Installationsprogramm selbsttätig. Ansonsten navigieren Sie in das Stammverzeichnis Ihres CD-ROM-Laufwerkes und starten per Doppelklick die Datei

SETUP.EXE

Die Installation entspricht dem Windows üblichen Standard einschließlich der Deinstallation des Programmsystems über die Systemsteuerung "Software". Der Installationsort der Programme (Zielverzeichnis) kann während der Installation frei gewählt werden.

linfo Installieren Sie die Software in ein Verzeichnis in dem Sie auch Lese- und Schreibrechte haben.

Das Start-Icon wird automatisch auf dem Desktop des PC's angelegt.

Deinstallieren der Software über die Systemsteuerung:

Das Entfernen aller Komponenten vom PC erfolgt über die Windows "Systemsteuerung". Unter "Software", Eintrag "WinPQ mobil" löschen Sie mit der Schaltfläche "Entfernen" die Auswertesoftware.

Es werden alle Programmteile, einschließlich der erzeugten Verknüpfungen, nach einer einmaligen Bestätigung vollständig entfernt. Vor der Deinstallation sind die gestarteten Programmkomponenten zu schließen.

Software Update

Die Auswertesoftware sowie alle Updates und die aktuelle Gerätefirmware finden Sie kostenfrei auf unserer Webseite www.kbr.de

info Bitte installieren Sie auch die aktuell Gerätefirmware auf Ihr Messgerät um neue Funktionen nutzen zu können.

8.2 Startbildschirm WinPQ mobil

- Öffnen einer Messung von der Festplatte

Startbildschirm der Auswertesoftware WinPQ mobil

- Laden der Messdaten des multilog 2 Setup des multilog 2 ändern Onlinemessung mit multilog 2 - 0 D. en Janth en En -1404 100 e x ALeiter-Netz nunga recommended / 54k 4001/2301 Frequence 50°w lotter Meanterval 608 ateaeur 16847 Hessung Beginn: 13.04.2012 13:00:33 19.04.2012 22.55:00 ung Endei 6d 9h 54m 27e 9223 0930-302 est 1.140 -DSP-Sermon 1.243 are.... Sinstellungen t eilt ø × + A freq Uef Ueff max (20ms) Uel' min (10ms) U Rundsteuersignal (200 THD ideal a DC Spannung Geradzahlige Harmonische Ungeradzahlige Harmonische Interharmonische Curretflicke PF5 (Flicker Ausgang S) Langzeitflicker UU Unsymmetrie Mitysterr Gegenny Nulleystem US Null/Mitsystem Abrusichung Unann (N) PWHD Gewichteter THD Stram
 Leistung
 Leistung (5 min)
 Energie
 Inergie (15 min) # × PQ-Ensignisses (9 Zyldischie Disters Oszilicskops [48] 20ms RMGs [9] e(H) H I. 18 믭 88 1 10 1 10 88 1 egel-Zeitslagrenm

8.2.1 Allgemeine Einstellung der Software

Sprache ändern

Im Menü "Einstellungen" kann die Sprache der Auswertesoftware geändert werden. Nach dem Wechsel auf eine neue Sprache muss die Software neu gestartet werden, damit die Änderung wirksam wird.

Daten Darstellen E	instellungen Fenster Zusatz Hilfe	2	
Information Spannungssystem Nennspannung L-I Frequenz:	Sprachen Einstellung Farben Allgemein Export Grundeinstellung Anzeige Harmoni	ische	中文 Czech Deutsch English Español Français
Messintervall:	60s		Italiano
Rundsteuerfrequenz	: 168Hz		Dutch (NL)
Messung Beginn:	13.04.2012 13:00:33		Polski
Messung Ende:	19.04.2012 22:55:00		Русский

Farben der Linien ändern

Hier kann jedem Messkanal eine bestimmte Farbe zugewiesen werden. Es können sowohl Kanalfarben für den hellen Hintergrund sowie für den schwarzen Hintergrund festgelegt werden. Für den Drucker werden immer die Farben mit hellem Hintergrund verwendet.

Export-Grundeinstellungen:

Allgemein Einstellungen

Logo in Ausdrucken und Überschriften ändern

Co2 Faktor: 550 g/kWh 🖨

An dieser Stelle kann der CO_2 -Faktor für eine kWh Energie hinterlegt werden. Dieser wird dann in den Langzeitdaten als Grundlage für die Berechnung verwendet.

Diese 9 Textfelder erscheinen unter dem Icon "Kommentar" als Vorlagetext und können hier mit Informationen zur Messung gefüllt werden.

		-	-			
Information	đ ×	Normbericht	EN50160 Details	Spannungsharmonische	Tabelle Harmonische	
Spannungssystem:	4 Leiter Netz	1				
Nennspannung L-L / L-N:	400.00 V / 230.94 V					
Frequenz:	50 Hz					
Messintervall:	600 s					
Rundsteuerfrequenz:	168 Hz					
Messung Beginn:		Granturet				
Messung Ende:		Set the resolution of				11
Messdauers		Komm	entare zur Messung			See Sul
Seriennummer Gerät:	1050-304					
Firmware:	1.151	Kommenta	or 1: 2	0 KV		
DSP-Version:	1.257	Kommenta	ar 2:			
		Kommenta	ar 3:			
		Kommenta	ar 4:			
		Kundes	p	apierfabrik Müller		
		Adresse:	5	uliggasse 2		
		Kontakti				
*		Teleform	ummer:			
Kommentaria	Einstelkingen Messgerät					

Grundeinstellung Harmonische

Unter "Einstellungen / Grundeinstellung Harmonische" ist die Art der Darstellung einstellbar.

- Spannungsharmonische: Anzeige in "Volt" oder "% der Grundschwingung"
- Stromharmonische: Anzeige in "Ampere", "% der Grundschwingung" oder "% vom Anlagen-Nennstrom"

Design WinPQ mobil ändern

WinPQ mobil bietet zwei verschiedene Designs von Bildschirmdarstellungen an.

- Windows native
- Black magic

Beispiel: Design "Black magic" mit schwarzem Hintergrund

In der Einstellung "Black magic" werden alle Druckaufträge in "Windows nativ" gedruckt.

8.2.2 Laden der Messdaten vom Messgerät multilog 2 auf den PC

Verbinden Sie den Netzanalysator über das mitgelieferte USB-Kabel mit dem PC.

Über das Icon wird Verbindung zum Messgerät aufgenommen. Nach dem Betätigen der Taste werden, bei angeschlossenem multilog 2 alle im Messgerät verfügbaren Daten angezeigt.

Für das Herunterladen der Messdaten vom multilog 2, oder für Änderungen im Setup des Messgerätes muss keine zusätzliche Netzversorgung am Gerät angeschlossen sein. Das Messgerät wird über die angeschlossene USB-Schnittstelle versorgt.

Die Geschwindigkeit der Datenübertragung beträgt ca. 10MB / Minute die Datengröße des gesamten Messfiles wird zu jeder Messung angezeigt.

Folgende Anzeige erscheint im Display des multilog 2, wenn das Gerät nur über eine USB-Schnittstelle versorgt wird:

remot	e mode				
Detendentingung Pesplate Import Ma Messprät:	MGM-81 POBIOX300 INFIDE LH2 SH(1128-303 SCOM12]		Messfaten übertragen	-	Laden von Messdaten auf den PC
Datum 94.00 2012 160210 94.00 2012 160210 94.00 2012 160210 94.00 2012 160123 94.00 2012 160126 94.00 2012 160126 94.00 2012 160039	Mexogeniti Vienicien Datengebbe V60.342 V60.342 V60.342 V60.342 V60.342 V60.342 V60.342 V60.342 V60.342	112788 152163 15246 15246 15146 15156 15157 15157 152183	Cater Godren		Löscht markierte Messdaten von dem Messgerät

Nach dem Auslesen der Messdaten vom Messgerät zur PC-Festplatte, kommt die Meldung "Sollen die Daten nun im Messgerät gelöscht werden?"

Mess	gerät 🗾
	Sollen die Daten nun im Messgerät gelöscht werden?
	Yes No

- ja Messdaten werden gelöscht und der belegte Speicher im Gerät ist frei.
- Nein Die Messdaten bleiben weiterhin im Messgerät gespeichert und können von weiteren PC´s heruntergeladen werden.

info

Wir empfehlen Ihnen, die Messdaten aus dem Gerätespeicher nach dem Download zu löschen, um den Speicher des Messgerätes nicht unnötig zu füllen.

Beschriftung der Messungen

In dieser Ansicht können zu jeder Messung vier Kommentare vergeben werden. Ist noch keine Bemerkung eingegeben worden, steht "-" in diesem Feld. Über einen Doppelklick auf das Kommentarfeld kann dieses editiert werden.

Alle Kommentarfelder erscheinen in den gedruckten Berichten.

and a second second	age at.						
atenverzeichnis: G: Wessda	ten\20120123_1244_000	0					Laden
Jatum	Messgerät Version	Datengröße	Kommentar 1	Kommentar 2	Kommentar 3	Kommentar 4	
06.09.2012 14:56:03	V01.142	371 KB	-			-	
04.09.2012 16:18:07	V01.142	308 KB	Kommentar 1	Kommentar 2	Kommentar 3	Kommentar 4	
04.09.2012 16:03:19	V01.142	152 KB	Kommentar 1	Kommentar 2	Kommentar 3	Kommentar 4	
04.09.2012 16:03:19	V01.142	152 KB	Kommentar 1	Kommentar 2	Kommentar 3	Kommentar 4	Daten Kische
04.09.2012 16:02:10	V01.142	152 KB	Kommentar 1	Kommentar 2	Kommentar 3	Kommentar 4	Contractore
04.09.2012 16:01:26	V01.142	152 KB	Kommentar 1	Kommentar 2	Kommentar 3	Kommentar 4	
04.09.2012 16:00:50	V01.142	152 KB	Kommentar 1	Kommentar 2	Kommentar 3	Kommentar 4	
08.06.2012 07:48:29	V01.140	98145 KB	Station 4	Expert 7	Spannungsabgr	TMD	
12 04 2012 12:00-30	V01.140	57718 KB	Kommentar 1	Kommentar 2	Kommenter 3	Kommentar 4	

8.2.3 Datenordner im Windows-Explorer

Wird ein Text in das 1. Kommentarfeld einer Messung eingetragen, so erhält auch der Ordner mit den Messdaten im Windows Explorer diese Bezeichnung.

8.3.4 Laden der Messdaten bei laufender Messung

Um die Messdaten während einer gestarteten Aufzeichnung aus dem Messgerät auslesen zu können, wird die Messung für die Dauer der Datenübertragung kurz angehalten. Bestätigen Sie die Frage "Soll die Aufzeichnung angehalten werden?" mit "Ja"

Datenübertragung			19 2
Vestgaatte Deport	PQBOX100 Verv01.1	N2 5H1126-363 [COM12]	* Messdaten überizagen
Datum	Mesogerät Version	Ditengrôte Messgerät Wessgerät Soll die Aufzeichnung angehalten werden? Uten Noter Soll die Aufzeichnung angehalten werden? Uten Noter Soll die Aufzeichnung angehalten werden?	Caten Baden

Selektieren Sie die Messdaten und betätigen Sie das Icon "Messdaten übertragen".

Mit dem Betätigen der Taste "Messung weiterführen" wird die Messung weiter fortgeführt. Alle Messdaten sind am Ende der Aufzeichnung in einer kompletten Messdatei verfügbar.

estplatte Import	Messgerät			
lessgerät:	PQBCIK 100	Ver:01.142 Sn:1126-303 [COM12]	* 8	lessdaten übertrage
Datum	Messgerät Ver	sion Datengröße		🗊 Daten löschen
04.09.2012 16:18:07 V01.142			152 KB	lare as well of the
04.09.2012 16:03:19 V01.142			152 KB	ressuring weiter turne
04.09.2012 16:02:10 V01.142			152 KB	
1 04.09.2012 1	6:01:52	V01.142	152 KB	
04.09.2012 1	6:01:38	V01.142	152 KB	
04.09.2012 1	6:01:26	V01.142	152 KB	
04.09.2012 10	6:01:17	V01.142	133 KB	
04.09.2012 1	6:00:50	V01.142	152 KB	

8.3 Auswertung von Messdaten

Unter der Karte "Festplatte" werden alle auf dem PC verfügbaren Messungen aufgelistet. Die verschiedenen Messdaten können nach "Datum" und "Bemerkung" auf- bzw. abwärts sortiert werden.

Mit der Schaltfläche Laden wird die markierte Messung für die Auswertung geöffnet.

Das Icon Daten löschen Iöscht die Messdaten von der Festplatte des PC´s. Es können auch mehrere Messungen selektiert werden. Vor dem Löschen der Daten erfolgt eine Sicherheitsabfrage.

8.3.1 Verzeichnis der Messdaten ändern

Über die Schaltfläche öffnet sich ein Explorerfenster. Hier wird der Ordner zugewiesen, unter dem sich die Messdaten befinden.

Nicht den Ordner der Messdaten direkt auswählen sondern nur den übergeordneten Ordner. Es können beliebig viele Ordner mit Messdaten erstellt werden. Diese können an beliebigen Orten im Netzwerk liegen. Beispiel: ein Ordner für "Messdaten 20kV 2009".

Nach dem Öffnen einer Messdatei, erscheint die Information zum gesamten Messzeitraum. Im Feld "Auswerte Periode" hat man die Möglichkeit einen bestimmten Zeitraum innerhalb der Messung auszuwählen und nur diesen auszuwerten.

Beispiel: Eine Messung wurde über 10 Tage durchgeführt. Der Normbericht soll aber fest über eine Woche erstellt werden. Über die Taste "1 Woche" werden die Messdaten fest auf eine Woche beschränkt.

atenverzeichnis: Gr@essdaten\20120123_1244_000					Laden
Datum Messgerät Version (a) 04.09.2012 16:18:07 V01.142 (a) 04.09.2012 16:03:19 V01.142 (a) 04.09.2012 16:03:19 V01.142 (a) 04.09.2012 16:02:10 V01.142 (a) 04.09.2012 16:02:10 V01.142 (a) 04.09.2012 16:02:00 V01.142 (a) 04.09.2012 16:00:50 V01.142 (a) 04.09.2012 16:00:50 V01.142 (a) 04.09.2012 16:00:50 V01.142 (a) 04.09.2012 16:00:50 V01.142 (a) 04.09.2012 13:00:30 V01.140	Datengröße Kommentar 1 Auswerte Periode Messzeitraum Beginn: 1 Dauer: 1 Auswerte Periode Beginn: 13 Ende: 19 Dauer: 1 Zeitperiode Gesamt 17ag	Kommentar 2 Kom 3.04.2012 13:02:00 9.04.2012 22:55:00 6d 9h 52m 60s 04.2012 04.2012 22:55:00 04.2012 22:55:00 6d 9h 52m 60s 04.2012 04.2012 22:55:00 6d 9h 52m 60s 04.2012 04.2012 22:55:00 6d 9h 52m 60s 04.2012	mentar 3 Komm Komm Komm Komm Komm Komm Komm Komm	nentar 4 nentar 4 nentar 4 nentar 4 nentar 4 nentar 4 nentar 4	Daten lösche

Nach dem Betätigen der Schaltfläche "OK" wird die ausgewählte Messung mit dem festgelegten Zeitraum geöffnet.

Alle nachfolgend gezeigten Messdaten und Auswertungen sind mit Demomessdaten erstellt worden, welche in jeder Installation enthalten sind.

Startbildschirm nach dem Laden der Demomessung.

Wenn der Mauszeiger über einem Symbol für Oszilloskop- oder RMS-Rekorder steht, werden Angaben zu diesem Ereignis angezeigt.

Übersicht Messdaten						
PQ-Ereignisse:[19]	×		*		*	
Oszilloskop:[3] 10ms RMS:[3] Rundsteuer:	0		0	+	Oszilloskop	_
		Anzeige des Tag oder Wochenwe	jes echsels		Zeit: 14.12.08 / 05:48:36	

Mit einem Mausklick auf ein Oszilloskopbild oder Effektivwertrekorder öffnet sich automatisch der zugehörige Störschrieb.

8.3.2 Normauswertung nach EN50160 und IEC61000-2-2

Die Schaltfläche verschafft einen schnellen Überblick aller Spannungsmesswerte, mit Bezug auf die Verträglichkeitspegeln der eingestellten Norm. In der Grundeinstellung ist dies die EN50160 und IEC61000-2-2 kombiniert. Je nach Messdatengröße kann die Erstellung dieser Statistik einige Sekunden dauern. In einer Wochenmessung werden mehr als 300.000 Messwerte mit dem zugehörigen Verträglichkeitspegel verglichen und grafisch dargestellt.

Bild: Beispiel einer EN50160 / IEC61000-2-2 - Auswertung

Die Balken zeigen in übersichtlicher Form den 95% Messwert in roter Farbe und den jeweils höchsten aufgetretenen Messwert "100%-Wert" in blauer Farbe.

Im angezeigten Beispiel verletzt der Maximalwert des Langzeitflickers Plt die Verträglichkeitspegel der Norm auf allen Phasen. Der 95%-Wert liegt aber weit unter den erlaubten Grenzwerten.

In den Grundeinstellungen zur Normauswertung ist es möglich zusätzlich einen 100% Grenzwert festzulegen. Sollte der im Setup festgelegte 100% Grenzwert überschritten worden sein,

so wird der blaue Balken rot schraffiert 📕

Oberschwingungen:

In den Balken der Spannungsharmonischen werden alle Messwerte der 2. bis 50. Oberschwingung mit dem jeweiligen Verträglichkeitspegel der Normen EN50160 und IEC61000-2-2 verglichen. Es wird jeweils die Harmonische dargestellt, welche dem zugehörigen Grenzwert am nächsten kommt oder diesen überschreitet.

Alle Norm-Grenzwerte können bei Bedarf vom Bediener im Menü "Setup / Grenzwerte" der Software verändert werden.

-		The second secon
ayerou		Auslesen Setup Messgerät
		Neues Setup an Messgerät sende
11	Langsame spannungsschwankung	Synchronisation Uhrzeit
	Grenzwert 95%: positiv [%] 110,00 🗇 negativ [%] 90,00 🔅	🔄 Autom. Synchronisieren
	Grenzwert 100%: positiv [%] 110,00 💠 negativ [%] 85,00 🔅	Öffnen Vorlage
Grundeinstellung	Schnelle Spannungsänderung	Speichern Vorlage
	Grenzwert 100%: positiv [%] 106,00 + negativ [%] 94,00 +	Counteinstellung
	Netrfrequent	Guidelasciary
	Grammet 00 50%	
Grenzwerte		
	overswert nowe: bosins fust 27'00 5 ueBans fust 4'/00 6	
	Unsymmetrie [%]: Langzeitflicker Pit: THD	
	Grenzwert 95%: 2,00 Crenzwert 95%: 1,00 Grenzwert 95%: 8,00 🐑	
Oszilloskop	Grenzwert 100%: 3,00 0 Grenzwert 100%: 5,00 0 Grenzwert 100%: 12,00 0	
	Spannungsharmonische	-
		Start Messgerat
		Stopp Messgerät
ms RMS Reko <mark>rd</mark> er		
	Harmonische: 2 0 Grenzwert 95%- 200	
	And a second sec	Edulation

Auflistung der Norm-Grundeinstellung des Netzanalysators:

In der Karte "Details" des Normberichtes erhält man detaillierte Angaben der jeweiligen Höchst- und Tiefstwerte, sowie den Bezug zum Normgrenzwert.

WinPQ mobil - Kam Daten Darstellen E	mentar 1 blandard reyo Instellungen Feister	e styscolautacescolo-2- Zuinte Hilfe					
		4 (9)					
Information	# X	Nombendit Billion	etals Spannungshamonische Harmonis	de.			
Spannungssystem	4Leter-Netz	Prequera		Sperrungsänderungen			
tierreporting L.C./I	LHIE 400V / 290V	Maximalverts	\$0.30 Hz		\$3	12	13
Presierz	50H2	99.50% Wets	50,07 Hz	Hausdawt	798.70.1	545.21.9	540.131
Hestintervals	60a	0.50% Wert:	49.94 mg	95,005,047	100 110		198.157
Rundsteventrequent	1 3694	Monalvert	49,9119	E OFFICIENT	200.71 V	200717	100.001
Hessurg Deprint	13.04.3012 13:00:33	Contract libro	80 60 km	Manufact	225,911	1000 T	app.ett
Hearing train	29.04.2012 22:55:00	Contraction .	policy re		eve 97 9	202.00 1	400-81
		Grandmant Hant	49.30 P2	Granzvert Max:	253.00 v	Anzahi (Preses Interval):	\$225
Mesadauers	4d th 5m 27s	Andahi (20s Werte):	55351	GenzietMit	207.00 V		
Anashi Mesontervali	9223	Spannungsunsymmetrie		Roan:			
		Normalivent	0.27		- 11		- 13
		\$5.00% Wettr	0.20	939539387 m	**		
Selemunner Gerät	0930-302			Maxmalvert:	3.13	1.94	3.06
Pymoles:	1.140	Orinthiert:	2.00	95.09% litert	0.58	0.54	0.53
DSP-sersion:	1.20	Anzahi (Frees Interval):	9219	Grenzivers Max	1.00	Anoshi (2h Werte)	764
-	formationen Hannesat	Mittelsort Tariffs					
Antoencondenia e		1.	43	u .		13	Sume
Zykleche Deten	e ×		0.0306		L-065	-1.5882	L3987
Autoahl							
A Frequenz A Spannung A Syannung A Leistung A Leistung A Leistung A Leistung A Leistung A Leistung	15 min) 5 min)						

Beispiel: Normauswertung Flicker

Die Maximalwerte der Phasen betragen: L1 = 3.11; L2 = 2.56; L3 = 3.06. Da der Grenzwert Plt bei 1 liegt, überschreitet der Balken der Phasen L2 in der Übersichtsdarstellung die Grenzwertlinie. Die 95% Werte (rote Balken) liegen alle unter dem Grenzwert.

Die Karte "Spannungsharmonische" zeigt alle Harmonischen in einem Balkendiagramm. Alle Oberschwingungen werden zum jeweiligen Grenzwert der eingestellten Norm skaliert.

Die Balken zeigen in übersichtlicher Form den 95% Messwert in roter Farbe und den jeweils höchsten aufgetretenen Messwert "100%-Wert" in blauer Farbe. In der Karte "Harmonische" werden die Grenzwerte der eingestellten Norm, sowie die 95%-Werte und Maximalwerte der einzelnen Phasen tabellarisch aufgelistet. Sollte eine Harmonische die Grenzwerte verletzen, wird die entsprechende Zeile rot markiert.

Normberio	ht EN50160	Details	Spannu	ungsharmonische	Harmonische			
	Grenzwert	L1 - 95	.00%	L1 - Max	L2 - 95.00%	L2 - Max	L3 - 95.00%	L3 - Max
THD	8.0000 [%]	1.42	71 [%]	1.8654 [%]	1.4448 [%]	1.9115 [%]	1.5434 [%]	2.0328 [%]
02	2.0000 [%]	0.03	99 [%]	0.0955 [%]	0.0386 [%]	0.0821 [%]	0.0403 [%]	0.0907 [%]
03	5.0000 [%]	0.27	08 [%]	0.3773 [%]	0.1565 [%]	0.2510 [%]	0.5147 [%]	0.6321 [%]
04	1.0000 [%]	0.03	11 [%]	0.0828 [%]	0.0187 [%]	0.0577 [%]	0.0191 [%]	0.1263 [%]
05	6.0000 [%]	0.85	12 [%]	1.3157 [%]	0.8528 [%]	1.3938 [%]	0.9483 [%]	1.6095 [%]
06	0.5000 [%]	0.02	03 [%]	0.0299 [%]	0.0272 [%]	0.0562 [%]	0.0197 [%]	0.0365 [%]
07	5.0000 [%]	0.79	78 [%]	1.2102 [%]	0.7836 [%]	1.1744 [%]	0.7376 [%]	1.1216 [%]
08	0.5000 [%]	0.01	70 [%]	0.1004 [%]	0.0300 [%]	0.0990 [%]	0.0202 [%]	0.0887 [%]
09	1.5000 [%]	0.34	36 [%]	0.4942 [%]	0.3366 [%]	0.4439 [%]	0.3225 [%]	0.4194 [%]
10	0.5000 [%]	0.02	83 [%]	0.0480 [%]	0.0218 [%]	0.0487 [%]	0.0249 [%]	0.0347 [%]
11	3.5000 [%]	0.71	57 [%]	0.9166 [%]	0.7581 [%]	0.9578 [%]	0.7708 [%]	1.0336 [%]
12	0.5000 [%]	0.01	23 [%]	0.0353 [%]	0.0140 [%]	0.0360 [%]	0.0135 [%]	0.0457 [%]
13	3.0000 [%]	0.31	37 [%]	0.5221 [%]	0.3283 [%]	0.5625 [%]	0.3016 [%]	0.4882 [%]
14	0.5000 [%]	0.01	39 [%]	0.1391 [%]	0.0287 [%]	0.1344 [%]	0.0332 [%]	0.1408 [%]
15	0.5000 [%]	0.24	44 [%]	0.3193 [%]	0.2482 [%]	0.3281 [%]	0.2538 [%]	0.3453 [%]
16	0.5000 [%]	0.03	73 [%]	0.0658 [%]	0.0248 [%]	0.0421 [%]	0.0363 [%]	0.0650 [%]
17	2.0000 [%]	0.34	21 [%]	0.6037 [%]	0.3002 [%]	0.5316 [%]	0.3622 [%]	0.5837 [%]
18	0.5000 [%]	0.02	19 [%]	0.0837 [%]	0.0185 [%]	0.0820 [%]	0.0170 [%]	0.0719 [%]
19	1.5000 [%]	0.26	30 [%]	0.3971 [%]	0.2334 [%]	0.3596 [%]	0.2270 [%]	0.3664 [%]
20	0.5000 [%]	0.02	39 [%]	0.1732 [%]	0.0431 [%]	0.1607 [%]	0.0365 [%]	0.1811 [%]
21	0.5000 [%]	0.29	49 [%]	0.4358 [%]	0.2758 [%]	0.4051 [%]	0.3200 [%]	0.4597 [%]
22	0.5000 [%]	0.05	11 [%]	0.0818 [%]	0.0279 [%]	0.0672 [%]	0.0444 [%]	0.1042 [%]
23	1.5000 [%]	0.40	23 [%]	0.6298 [%]	0.3364 [%]	0.6198 [%]	0.3457 [%]	0.5803 [%]
24	0.5000 [%]	0.02	89 [%]	0.1484 [%]	0.0344 [%]	0.1406 [%]	0.0366 [%]	0.1221 [%]
25	1.5000 [%]	0.20	15 [%]	0.3566 [%]	0.2195 [%]	0.4050 [%]	0.1800 [%]	0.3497 [%]
26	0.3500 [%]	0.04	01 [%]	0.1855 [%]	0.0454 [%]	0.1988 [%]	0.0521 [%]	0.2146 [%]
27	0.2000 [%]	0.22	93 [%]	0.3414 [%]	0.2357 [%]	0.3194 [%]	0.2665 [%]	0.4157 [%]
28	0.3400 [%]	0.06	41 [%]	0.1000 [%]	0.0448 [%]	0.0988 [%]	0.0701 [%]	0.1101 [%]
29	1.0600 [%]	0.41	18 [%]	0.5704 [%]	0.4058 [%]	0.5457 [%]	0.3751 [%]	0.4865 [%]
30	0.3300 [%]	0.05	35 [%]	0.1133 [%]	0.0491 [%]	0.1286 [%]	0.0487 [%]	0.0938 [%]
31	0.9700 [%]	0.19	27 [%]	0.3123 [%]	0.2201 [%]	0.3298 [%]	0.1993 [%]	0.3585 [%]
32	0.3300 [%]	0.03	43 [%]	0.2041 [%]	0.0627 [%]	0.2941 [%]	0.0469 [%]	0.1899 [%]
33	0.2000 [%]	0.15	16 [%]	0.2822 [%]	0.2447 [%]	0.4340 [%]	0.2168 [%]	0.4647 [%]
34	0.3200 [%]	0.05	40 [%]	0.0883 [%]	0.0447 [%]	0.1425 [%]	0.0545 [%]	0.0861 [%]
35	0.8300 [%]	0.31	03 [%]	0.5276 [%]	0.3355 [%]	0.4975 [%]	0.2867 [%]	0.4328 [%]
36	0.3200 [%]	0.05	10 [%]	0.0759 [%]	0.0437 [%]	0.0995 [%]	0.0289 [%]	0.0931 [%]
37	0.7700 [%]	0.18	03 [%]	0.3137 [%]	0.2054 [%]	0.2994 [%]	0.1597 [%]	0.2618 [%]

Bild: Detaillierte Auflistung der 2. bis 50. Harmonischen und der jeweiligen Verträglichkeitspegel.

Höchster Messwert der Aufzeichnung

95%-Wert der Messung

Grenzwert nach Norm

EN50160 / IEC61000-2-2 Bericht erstellen:

Mit der Funktion Drucken öffnet sich ein mehrseitiger Normbericht.

8.4 Balkendiagramm der Harmonischen und Interharmonischen

Über die beiden Icons werden alle Spannungs- und Stromharmonische, sowie Spannungs- und Strom- Interharmonische grafisch dargestellt.

Die Darstellung der Spannungs- und Stromharmonischen kann über das Menü "Grundeinstellung Harmonische" nach der Messung verändert werden.

🛓 Anzeigeart Harmonische
Spannungsharmonische in:
© [M]
% der Grundschwingung
Stromharmonische in:
[A]
🔘 % der Grundschwingung
🔘 % vom Nennstrom Anlage
Nennstrom der Anlage in [A]: -1.000
OK Cancel

Das Beispiel zeigt die Auflistung aller Stromharmonischen der drei Phasen und Neutralleiter. Es fallen die Ordnungszahlen 5. und 7 auf. Die Ströme und Spannungen können je nach Softwareeinstellung in Absolutwerten oder %-Werten dargestellt werden.

Tabelle der Harmonichen

Stromharmonische	Zwischenharmonische	Tabelle Harmonische	Tabelle Zwischenharmonische	D-A-C-H - CZ		
L1 -	95%	L1 - Max	L2 - 95%	L2 - Max	L3 - 95%	L3 - Max
02	2.8521 [A]	3.4658 [A]	2.6505 [A]	3.5537 [A]	2.5926 [A]	3.2562 [A]
03	1.7764 [A]	2.2264 [A]	1.8707 [A]	2.3933 [A]	1.5029 [A]	1.9265 [A]
04	1.2930 [A]	1.6541 [A]	1.2510 [A]	1.8606 [A]	1.2403 [A]	1.6760 [A]
05	88.0763 [A]	106.7447 [A]	88.3021 [A]	107.1785 [A]	87.8084 [A]	106.6618 [A]
06	1.0791 [A]	1.4184 [A]	1.0394 [A]	1.4161 [A]	1.0252 [A]	1.4987 [A]
07	25.4768 [A]	32.0951 [A]	26.1785 [A]	33.0616 [A]	25.5559 [A]	32.1389 [A]
08	0.6486 [A]	0.9401 [A]	0.6441 [A]	0.8871 [A]	0.6309 [A]	0.8007 [A]
09	0.5818 [A]	0.7895 [A]	0.5549 [A]	0.7112 [A]	0.5185 [A]	0.7063 [A]
10	0.5378 [A]	0.7709 [A]	0.5205 [A]	0.7113 [A]	0.5028 [A]	0.7268 [A]
11	24.4563 [A]	30.5683 [A]	24.4522 [A]	30.5124 [A]	24.3625 [A]	30.4375 [A]
12	0.4965 [A]	0.6506 [A]	0.4973 [A]	0.7355 [A]	0.4640 [A]	0.6367 [A]
13	11.0046 [A]	14.7722 [A]	11.3741 [A]	15.3005 [A]	11.0889 [A]	14.8478 [A]
14	0.3423 [A]	0.4776 [A]	0.3570 [A]	0.4720 [A]	0.3331 [A]	0.4413 [A]
15	0.3337 [A]	0.4499 [A]	0.3349 [A]	0.4376 [A]	0.3039 [A]	0.3993 [A]
16	0.3181 [A]	0.4593 [A]	0.3323 [A]	0.4456 [A]	0.3126 [A]	0.4064 [A]
17	12.5913 [A]	15.7555 [A]	12.4908 [A]	15.6298 [A]	12.5218 [A]	15.7005 [A]
18	0.3317 [A]	0.4455 [A]	0.3349 [A]	0.4393 [A]	0.3082 [A]	0.4272 [A]
19	7.0123 [A]	9.5618 [A]	7.3320 [A]	10.0010 [A]	7.0974 [A]	9.5995 [A]
20	0.2396 [A]	0.3149 [A]	0.2420 [A]	0.3224 [A]	0.2352 [A]	0.3055 [A]
21	0.2378 [A]	0.3196 [A]	0.2341 [A]	0.3165 [A]	0.2211 [A]	0.🔉29 [A]
22	0.2334 [A]	0.3069 [A]	0.2334 [A]	0.3146 [A]	0.2301 [A]	0.2942 [A]
23	7.6396 [A]	9.3913 [A]	7.5836 [A]	9.2955 [A]	7.6189 [A]	9.3453 [A]
24	0.2514 [A]	0.3249 [A]	0.2534 [A]	0.3468 [A]	0.2290 [A]	0.3186 [A]

8.4.1 Bewertung der Stromharmonischen nach D-A-CH-CZ

Die Beurteilung der Stromharmonischen nach der D-A-CH-CZ Richtlinie kann im Menüpunkt "Stromharmonische" ausgewählt werden. Es ist möglich unter Eingabe der Kurschlussleistung des Netzes und der vereinbarten Anschlussleistung die maximal erlaubten Oberschwingungspegel von der Software berechnen zu lassen. Die gemessenen Pegel werden in einer Tabelle mit den berechneten Grenzwerten verglichen. Rote Messwerte zeigen eine Überschreitung der Grenzwerte.

omharmonische	Zwischenharmonische	Tabelle Harmonisch	Tabelle Zwischenh	armonische D	A-C-H-C2		
	Kern	while emiliated and takelor	ont-managed total:		10000		
			and a second secole		10000		
	Anad	hlussleistung (kVA):			630		
	Hanne	and a second sec			000.000		
		spanning of tit.					
	niès	siger THDi (%):			8.0	Alexandria and	
						the reaction is	and an analysis
	Harriso		Richausta	1946	Pennel (A)	Termes Land	er Perset (A)
	Harmeire	inche 13 - L	Richtwerte N	mus. Li - Li	Pegel [A] Pd	pemessene II-0	er Pergeet (A). Ri
	Harmion H3	Hiche UI-L	Fictorium N 15.0	тык. Ц-Ц 21.7	Pegel [A] 14	pemessene Li - Li 9.9	rr Pegget [A] N 20.9
	Harmien H 3 H 5	inche 13 - L 1 - 1330	Richtwerte N 15-0	так. Ц-Ц 17 543	Pegel [A] N 452	pemession 11-13 9.9 7.4	r Perget (A) Ni 20.9
	Harmen H3 H3 H3	nche U-L 6 5 1330 100	Richtwerte N 150	11-13 21.7 34.3 36.2	Pegel [A] 11 452	pemessens L1 - L1 9.9 7.4 3.5	or Proget [A.] Ri 20.9
	Harmein H3 H3 H3 H3 H1	inche UI-L 1 6.6 1 13.0 1 100 1 5.6	Richevene N 150	maa 14 - 13 71.7 54.3 36.2 18.1	Pegel [A] [N 652	pengsiene Ll - Ll 9.9 7.4 3.5 1.3	r Poget [A] Ež 20.9
	Harmsin H3 H3 H7 H11 H11	inche L1-L 6.6 5 13.0 7 10.0 1 3.0 3 4.0	Fictoria N 350	11-14 21:7 54.3 54.3 54.3 54.3 54.3	Pegel [A] N 452	perception 11 - 11 9.9 7.4 3.5 1.3 0.7	rr Pergent [A1] Bit 20.9
	Hamsin H3 H5 H7 H1 H1 H1	nche LI-L 6.6 13.0 1.00 1.3 3.4 2.7,20	Ficteworte N 15.0	11-11 11-11 11.7 54.3 36.2 18.1 18.1 18.3 7.2	Pegel [A] 14 452	pemesson 11 - L3 9 - 9 7.4 3.5 1.3 0.7 0.6	r Peget [A] 82 20.9
	Harmien 143 145 147 141 141 141 141 141 141 141	inche 11 - L 66 5 1320 7 100 1 56 3 48 7 20 9 1.5	Richewerte N 150	11-13 11.7 36.3 36.2 18.4 14.5 7.2 5.4	Pegel [A] N 452	pemession 11-13 99 74 35 13 0.7 0.6 0.3	r Peget [A] 82 20.9
	Hammin H3 H3 H1 H11 H11 H11 H11 H11 H11 H11 H1	mche U-L 6 5 1300 1 1 5 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1	Richtwerte N 180	1046 11-13 21.7 54.3 36.2 181 184 184 184 184 184 184 184 184 184	Pegel [A] Pi 652	percession L1 - L1 99 7.4 3.5 1.3 0.7 0.6 0.3 0.5	er Porgest [A] Re 20.9
	Harmain H3 H3 H1 H11 H11 H11 H11 H11 H11 H21 H21 H21	nche LI - L 6.6 5.13.0 7.15.0 5.42 7.229 9.13 1.35 1	Richesene N 350	maa LL-LL 21.7 54.3 86.2 184.3 184.3 7.2 5.4 2.6	Pegel [A] [4 .452	pengsteris Li - Li 99 7.4 3.5 1.3 0.7 0.6 0.3 0.5 0.3	r Peget [A] Fi 20.9

In Abhängigkeit der Grenzwerte wird im druckbaren Bericht ein Kommentar (Anschlussbedingungen erfüllt / nicht erfüllt) eingeblendet.

Details											
DACH-CZ: Anschlussbedingungen erfüllt											
Harmonische	Richtwerte		max. Pe	max. Pegel [A]		Pegel [A]					
	L1 - L3	N	L1 - L3	N	L1 - L3	N					
H 3	6.0	18.0	21.7	65.2	9.9	20.9					
H 5	15.0		54.3		7.4						
H 7	10.0		36.2		3.5						
H 11	5.0		18.1		1.3						
H 13	4.0		14.5		0.7						
H 17	2.0		7.2		0.6						
H 19	1.5		5.4		0.3						
H 21	1.0		3.6		0.5						
H 23	1.0		3.6		0.3						
H 25	1.0		3.6		0.2						

8.4.2 Pegel-Zeit-Diagramme der Langzeitdaten

Im Menüpunkt "Zyklische Daten" werden alle permanent aufgezeichneten Messdaten aufgelistet. Es werden in jeder Messung über 2250 verschiedene Messwerte (Spannungen, Harmonische, Zwischenharmonische, Ströme, Leistungen und Energie) gespeichert. Beliebige Messwerte lassen sich miteinander in einem Pegel-Zeit-Diagramm darstellen. So lässt sich z. B. ein Zusammenhang zwischen den Spannungsschwankungen, den daraus resultierenden Flickerpegel und dem Verursacher im Netz mittels zugehöriger Stromänderungen bilden.

Das Markieren des gewünschten Parameters (oder mehrerer Parameter) **Das U eff min** und betätigen der Taste Pegel-Zeitdiagramm stellt das Pegel-Zeit-Diagramm der gewünschten Messwerte dar.

Bild: Pegel-Zeit-Diagramm der 10ms Minimalwerte der Spannungen L1, L2, L3

Zoomfunktion in der Grafik:

Um einen Bereich zu vergrößern aktiviert man die Zoomfunktion. Dann zieht man mit aktivierter linker Maustaste ein Fenster von links oben nach rechts unten. Wird das Fenster entgegengesetzt gezogen, so wird die Vergrößerung zurückgesetzt.

Wenn die Taste "Verschieben" aktiviert ist, lässt sich die Grafik frei in der Zeitachse, sowie Werteachse verschieben.

Marker setzen:

Über die Taste "Marker" hat man die Möglichkeit zwei Marker in die Grafik zu setzen.

Es können zwei Marker mit Hilfe der linken Maustaste im Plot gesetzt werden. Dabei wird die am nächsten gelegene Kurve selektiert und der Marker nimmt deren Farbe an.

Marker Nr. 1 mit der linken Maustaste und

Marker Nr. 2 mit der linken Maustaste und

Der Abstand zwischen beiden Markern wird als Absolutwert bestimmt. Der zeitliche Abstand wird immer berechnet, die Werte-Differenz wird nur bei identischen Einheiten berechnet.

Darstellung der Linienarten

Es werden vier Arten von Darstellungen für die Linien angeboten.

- 1. Verbindet jeden Messpunkt miteinander (Grundeinstellung für alle Diagramme)
- 2. Stellt nur die Messpunkte dar, die Punkte werden nicht durch Linien verbunden
- 3. Diese Stufendarstellung ist besonders geeignet für Mittelwerte, z. B. 15 Minuten Leistungswerte. Hier wird der Mittelwert über die Messperiode als gerade Linie dargestellt.

4. Die "Stufendarstellung invertiert" bietet die Möglichkeit Netzunterbrechungen im Pegel-Zeit Diagramm klar darzustellen.

Weitere Funktionen im Menü der rechten Maustaste:

- Marker entfernen bei gesetztem Marker kann dieser wieder entfernt werden
- **Darstellung Flagging** = Messdaten, welche während eines Netzeinbruches oder Netzunterbrechung ermittelt wurden, werden markiert (geflaggt). Hier kann die Markierung ein- und ausgeblendet werden
- Achsenskalierung links = linke Messwertachse kann manuell skaliert werden
- Achsenskalierung rechts = rechte Messwertachse kann manuell skaliert werden
- Achse logarithmisch skalieren
- Achsen automatisch teilen = SW trennt automatisch Messwerte mit eigener Skala sinnvoll so dass sich keine Messwerte überschneiden.
- Achsen automatisch skalieren = SW skaliert automatisch auf Maximal- und Minimalwerte über gesamten Bildschirm
- Einstellung Grenzwertlinie = Grenzwert und Farbe einer Grenzwertlinie kann festgelegt werden
- Messdaten komplett = gesamter Messzeitraum wird dargestellt
- Messdaten 1 Tag = die Zeitskalierung wird auf einen Tag gestellt
- Messdaten 7 Tage = die Zeitskalierung wird auf genau eine Woche gestellt
- Messdaten 2 Wochen = die Zeitskalierung wird auf 14 Tage gestellt
- Messdaten 4 Wochen = die Zeitskalierung wird auf 1 Monat gestellt
- **Kommentar einfügen** = Mit dieser Funktion kann ein Kommentar in die Grafik eingefügt werden. Dieser erscheint auch im Ausdruck.
- **Drucken** = aktuelle Grafik wird an den eingestellten Drucker gesendet oder als PDF-Dokument gespeichert

Einstellung Grenzwertlinie

Im Menüpunkt "Einstellung Grenzwertlinie" ist es möglich mehrere Grenzwertlinien zu definieren. Es werden die Farbe, der Wert, sowie die zugehörige Y-Achse der Grenzwertlinie eingestellt. Beispiel: Grenzwertlinie für die Spannung; 207V (-10% Unenn)

WintQ mobil - p Propri Zatiti ag amm (LL min)		
10= EQ + 100 h		10.000 Mar
01.06.20	12.07:46:31	74 23h 50m 37k
Marker 11 U.3 mm 240 13.06.3012 13 13 13 33 394		
Heamert 8 226.057(N)	" WILL MULTURE TO MANY	withink
Harker 2: U.3 min 13.08.2012 15:54:40.257		
Mesoweri 2. 225, 196 [k] 290	00 - (Surgreetlike enblenden	
	Enabling Geographie	
3140146 MesewertsHerenz: 0.863345 (V) 180	00 - Assalt Table: # Urks Petits	
Ξ	Marier renfugen Ronach	
Iviliative Catern Ø 🛪 190	00	
Auswehl + R Frequents - Spannung + Uatt		
Vert mix (30ms) Uut mix (30ms) Uut mix (30ms) Uut mix (30ms) D Funditivenigner (300ms) D Fund E Playerwinkel	-	
E P E DC Spannung	1	

Grenzwert für Harmonische einblenden

Soll eine Grenzwertlinie für eine Harmonische eingeblendet werden, so schlägt die Software den zugehörigen Grenzwert der eingestellten Norm automatisch vor. Der Grenzwert wird automatisch als %- Wert oder Absolutwert in Volt angeboten, abhängig von der dargestellten Kurve.

Kommentar einfügen

Mit der Funktion "Kommentar einfügen" ist es möglich, beliebig viele Texte in die Grafik zu setzen. Um diesen Begriff zu löschen oder in der Grafik zu verschieben, muss man diesen mit der Maus anklicken damit er sich rot verfärbt. Nun kann über die Windowsfunkton "entfernen" der Text gelöscht oder mit der Maus verschoben werden.

	** (www.mannewinawina	minimum		WMIT
200.00 -				
		2		
150.00 -		(voltage dip 132.23V	1

8.4.3 Oszilloskop-Aufzeichnungen

Mit der Karte "Oszilloskop" werden alle manuell, sowie über Triggereinstellungen aufgezeichneten Oszilloskopbilder, aufgelistet. Diese können nach dem Zeitpunkt oder der Triggerbedingung sortiert werden.

Über einen Doppelklick auf die Zeile oder durch betätigen der Schaltfläche Grafik erhalten Sie das entsprechende Oszilloskopbild.

Bei jeder Störwertaufzeichnung werden alle Spannungen "Leiter gegen Leiter" sowie "Leiter gegen Erde" aufgezeichnet.

Über die beiden Tasten 💌 💷 kann durch die getriggerten Bilder geblättert werden. Die SW merkt sich hierbei die Einstellungen des vorherigen Bildes und zeigt alle weiteren Bilder in der gleichen Darstellung (im Beispiel z.B. nur die Spannungskanäle ohne Strom)

Die Berechnung des FFT Spektrums (DC – 5.000Hz) ist über die Aktivierung des Feldes "FFT" von jedem getriggerten Oszilloskopbild möglich .

Die Markerfelder zeigen in der FFT Analyse die ausgewählte Frequenz und Amplitude im Spektrum an.

8.4.4 10 ms-RMS Störschriebe

Mit der Karte "10 ms RMS" werden alle manuell, sowie über Triggereinstellungen aufgezeichneten Effektivwert-Recorder, aufgelistet. Diese können nach dem Zeitpunkt oder der Triggerbedingung sortiert werden. Über einen Doppelklick auf die Zeile oder die Schaltfläche Grafik erhalten Sie den entsprechenden 10 ms- Effektivwertschrieb.

Auflistung aller 10 ms-RMS Aufzeichnungen

Über die beiden Tasten kann durch die getriggerten Bilder geblättert werden. Die SW merkt sich hierbei die Einstellungen des vorherigen Bildes und zeigt alle weiteren Bilder in der gleichen Darstellung (im Beispiel z.B. nur die Spannungskanäle ohne Strom)

8.4.5 Rundsteuer-Rekorder

Mit der Option "Rundsteuersignalanalyse" kann das multilog 2 gezielt auf ein Rundsteuersignal getriggert werden. Das Telegramm wird mit einer Auflösung von 10ms über die eingestellte Aufzeichnungsdauer registrieren. Die maximale Rekorderlänge beträgt 210 Sekunden.

Im Beispiel wurde die Rundsteuerfrequenz 750Hz über eine Dauer von 1 Minute aufgezeichnet.

Auflistung aller Rundsteuerrekorder in der Tabelle sowie in der grafischen Übersicht

Über die beiden Tasten 💵 💼 kann durch die getriggerten Bilder geblättert werden.

8.4.6 PQ Ereignisse

Mit der Karte "PQ-Ereignisse" werden alle Verletzungen der eingestellten Grenzwerte angezeigt.

Über die Schaltfläche Auflistung Ereignisse erhalten Sie die detaillierte Auflistung der PQ-Ereignisse mit Zeitpunkt und Extremwerten.

	the second second second second		08							
	Sec. March 1	**		-	fague	Manhaet	ingenial to be	and a	Diver	
	anti-specific	Allarian Apro.	1 Schrein Igenner	and the minimum prov. ULL	15042012345345		and the second second	15-04-2022 14:000	A Section	
1	emperanticitie:	4614 (23.9	2 Strain Isonak	the sections new USD	2556282345515		121	15.64 200 14:595	A Section	
i.	THE PT	101e	1 himstoor		transferring and a second			15.84 2021454	a to the stiller	
1	untrauefeaters	100			the lot opposite the sector			the second		
١.	have been	1245-2522 (2008-14						The second second		
1	ferrang being	10.04.0117 (2198.08)	5 Tarte Spann	education III's	2504,012,0450,05		-	Tame Table 14 and	a berarrinnes	
			a patronaulary	and a standard (1)	12242012346503		-	12-04-2022 14:000	N 3H 37 12H	
١.		Contract States and	3 Schools Spectrals	pschowniang rep. US	2504282345508			12/04/2022 14/202	N 3=5530+	
	with Pagetternales	9223	8 learnerger	take hing thi	2104202345318		-	13 84 2011 14 140	9 3=35-Qrs	
			8 Tale Speci	anguainteent VCI	104302345516		17	11843021456	A Section Million	
			10 Spromatigna	Dignitestee	2594282145556	+		15.84.202.14505	4 Sm Sta Silver	
1	eenume Geet	200-52	E Gestritur	Hannen iche 103	15242017345609	-	2	11442021456	- N	
1	if erem	1.54	12 Schneis Spanning	pocharming psc. UL2	25242002350828		-	04203300	and the latest	
Ι.			13 Schools Spenning	pathoantang tag UD	15242012150843		127	15 IN 2712 15 Red	1 1=37;756m	
1	tereteta	transfurger ressorts	M Schools Spectrum	pacture large pos. UL	1104262110630			15-04-2012-11-0014	U 1-3h Niew	
ġ,	-	**	15 Science Spanning	pathantany my bill	11042012110520		-	15.64.2012 15.650	1 1-1070	
ſ	O Enignua	Interals	to Detertoon	equal to the local sector	TRANSFER TRANSFE		-		i be in faire	
8	C B Propertode.	1	17 Tata Loan	min and block bird	-			the put inest	to be the filmer	
	If (a legischast.		18 5-1-1-1	International Contents	120420074300875			IT BE STILL CROKE	to the Things	
1	IZ G Spy Ghants.	27	-	and an in case 1971	white the latent of				to Vietna	
	R (R Versiguegou				ring or range in		110	they want these		
	I A Emplement So.	- 1		and and and and	Contraction of the local division of the		10	11.04.0004.0000		
	P. (6) thereivalla.	3 1		-garment fr.d	104.000 100010		- The second	12.04-0-0-12060	C. Don Sty Subject	
	Cal Genetosta.	1	15 phonesiles	www.edurg.00	21042021150605			15.04.2512.15000	() In Distance	
έ.	P. A Cherschrafts.		ID Schneitz Spacrung	petholaritang pet. ULI	15242012350829		-	1549-2202 15000	11 Jm 52: 900ms	
			24 Technolic Spontane	to device the permeters	1104202150839		-	1544 202 15550	11 Sec 53, 996ea	
			23 Tele Span	inglaint loch IU	23.04.2022.0308-09		+	19 M 20215000	11 1= 51; 800em	
			25 Shield Spanning	pathaniang ing GU	ELONDREENING IN		ш.	1104.00075555	II to Sh Kiles	
			D Tarte Spann	ingeneration ICU	110420210040		-	100.0011010	i textistine	
			28 Schooler Sparring	potheartung reg. (3)	25242012150829	+	-	3582021505	1 24/30/201000	
9			28 Talatown	Approximate that	11042812 120828		-	1544-2022 15050	It to Six Notes	
			In terms	Salashara, U.I.	1534.002.8568/8.		100	1544,002,05050	1.1= St.Miss	
			Description of							
			Roting same (04							
			Distance (M)	1 9		1		1 1		 00

Über die Schaltfläche **ITIC** ist es möglich alle Spannungsereignisse als ITIC-Darstellung anzuzeigen. Es werden alle Abweichungen zur Nennspannung in Dauer und Amplitude grafisch dargestellt

Auf der Karte "PQ Ereignisse" gibt es zusätzlich zur ITIC Grafik eine Ereignistabelle UNIPEDE Statistik für alle Spannungseinbrüche und Überspannungen.

Unter WinPQ mobil / Einstellungen / Allgemein kann diese Statistik umgeschalten werden, auf die Auswertung nach NRS 048 (Südafrika-PQ-Norm).

Ereig	nis-Matrix	
۲	nach EN5016	
0	nach NRS 04	

*	WinPQ mobil - [Haus 4: Ev	vent Matrix Tabelle]												
	Daten Darstellen Ein	stellungen Fenster Zu	satz	Hilfe										
	1 🕄 🔳 🔁 🕻	2 🖬 🖬 🖬		(
ation	Information		PX							р	auer t Im	nel		
Inform	pannungssystem:	4 Leiter-Netz	Â.	Spannungsei	nbruch u [%]	10 1 1 1		000	500		1000		5000
L	ennspannung L-L / L-N:	400V / 230V					10 St S	200	200 < t \$ 500	500 <	t ≤ 1000	1000	<12	5000
rker	requenz:	50Hz		90 > 1	u ≥ 80		0		0		0	-	0	
Ma	lessintervall:	60s		80 > 1	u ≥ 70		0		0	_	0	-	0	
_s	undsteuerfrequenz:	750Hz	E	70 > 1	u ≥ 40		0		0	_	0		0	
Deta	lessung Beginn:	19.03.2011 13:43:26		40 > 1	u 2 5		0		0	_	0		0	
	lessung Ende:	24.03.2011 14:02:09		5>1	u		0		0		0		0	
	lessdauer:	5d 0h 18m 43s												
	nzahl Messintervalle:	7218												
	eriennummer Gerät:	1010-301												
	irmware:	1.130	Ŧ											
	•	4												
	Kommentare	Einstellungen Messgerät												
e	PQ-Ereignisse	ć	YX											
e Dal	PQ-Ereignisse	Intervalle												
disch	Frequenzabw.		0											
Zyk	Bog-Schwank	9	0											
4	Spg-Schwank		0											
osko	🔲 🔳 Tiefer Spannu		0	0			Dau	or tim	-					
Oszil	Versorgungsu	•••	0	Uperspannur	ng		Dau	erųm	isj					
	Langsame Sp.		0	u [/o]	10 < + <	500	500 < t	< 5000	5000 < t <	60000				
RMS	🔲 进 Überschreitu.		0	< 120	0	000	000 < 1.	2 0000	0 0000 < 12	00000				
Oms	🔲 🎩 Überschreitu		0	120 < 110	0		0		0					
-	🔲 🎒 Überschreitu.		110	120 2 110	U		U		U					
lal														
Jersi														
dster														
Run														
nisse														
Ereig														
ğ														
				Übersicht Messdaten										
				PQ-Ereignisse:[2110]	* ** *** *	-	× × ×	****	× × × × × ×	× × ×	-		× ***	XX X XX 38
				Zyklische Daten:										
				Oszilloskop:[3]										
	Auflistung Ereignisse	Matrix ITIC		10ms RMS: Rundsteuer:[128]	0 00 000 0	on o	0 0 00 00 0	0001		00 0 00 000			0 000	
PQ	-Ereignistabelle erzeugt!				1									
			-											
		Т												

8.4.7 Datenexport – Intervalldaten

Unter "Einstellungen / Export" können grundlegende Parameter für den Messdatenexport festgelegt werden. Die Trennung des Dezimalzeichens ist bei einem deutschsprachigen Windows als Komma anzugeben, im englischsprachigen Windows als Punkt.

Ausgabeformat
Abgrenzung
🔘 Komma
Tabulator (^)
O Leerzeichen ()
🔘 Semikolon (;)
Dezimalpunkt
🔘 Punkt (.)
Komma (,)
Datum / Uhrzeit
31.12.2009 💌
11:54:37
Ausgabe
Header unterdrücken (für CSV Format)
Mit Zeilennummerierung
Abbruch OK

Unter "Daten / CSV Export" können nun alle Intervalldaten einer Messung exportiert werden um diese z.B. in MS Excel zu öffnen.

Im folgenden Menü können alle gewünschten Messwerte ausgewählt und mit der Taste "Export" in eine Datei exportiert werden. Unter "Auswahl speichern" können verschiedene Auswahldateien gespeichert wer-den. (z. B. Exportdatei aller Harmonischen)

Contraction and the second sec	nte 🕨 WinPQ mobil 🕨		▼ ♦ WinPQ me	obil durchsuchen
Organisieren 🔻 🛛 Neuer Ordne	r			:== •
Desl Name	Änderungsdatum	Тур	Größe	
🚺 M 🌗 config	25.05.2012 11:48	Dateiordner		
🖳 Ca 🔒 input	04.09.2012 16:25	Dateiordner		
🚢 🔋 🐌 logos	17.04.2012 12:06	Dateiordner		
🧰 🛛 🍌 temp	17.04.2012 13:23	Dateiordner		
P				
				
2				
Ni Ni				
Sy Sy				
Pa				
JE PC				
JE PF				
D. L.				
Dateiname: Kommentar	1_F.asc			
Dateityp: ASCII (*.asc)				

Der Name dieser Exportdatei sowie das Programmverzeichnis können frei gewählt werden.

Beispiel einer Exportdatei in MS-Excel:

L							-			
	А	В	С	D	E	F	G	Н	1	J
1	multilog 2		Seriennumn	ner: 101-004						
2										
3	Messung: De	momessung,	Solaranlage,	Ahorn, Wald	straße					
4										
5	Interval: 600	sec								
6	Spannung: 2	30 V								
7										
8										
9	Datum/Zeit:	26.02.2008 14	1:40:00 - 04.03	3.2008 14:10:0	0					
10										
11	Datum	Zeit	P L1	PL2	P L3	P Summenv	S L1	S L 2	S L3	S Summe
12	26.02.2008	14:40:00	28652.3	29438.1	25872.7	83963.2	32788.8	33100.7	28886.9	95998.9
13	26.02.2008	14:50:00	29317.4	31218.7	26715.3	87251.4	33387.5	34965	29512.1	99315.7
14	26.02.2008	15:00:00	27161.2	31757.6	26176.8	85095.6	30223.4	35967.5	29056.7	96802.4
15	26.02.2008	15:10:00	27458.8	31938.7	27016.5	86414	30806.4	36304.1	30553.1	98900.9
16	26.02.2008	15:20:00	27023.5	30529.4	25622.8	83175.7	29919.3	34191.5	28278.3	93621.9
17	26.02.2008	15:30:00	27349.7	30650.3	26668.2	84668.2	30020.8	34003.3	28995.5	94045
18	26.02.2008	15:40:00	32261.6	35320.6	32388	99970.3	35126.8	38619.2	35207.3	109620
19	26.02.2008	15:50:00	26943.4	30342	26975.9	84261.3	29702.8	34010.8	29689.1	94280

Die Reihenfolge der angewählten Messdaten im Auswahlfenster von WinPQmobil ist automatisch auch die Reihenfolge der Spalten in der Exportdatei.

Im CSV Export werden die Minimal - und Maximalwerte der Effektivwerte mit den genauen Zeitstempeln ausgegeben. Außerdem wird der Kurzzeitflicker (PST) und der Langzeitflicker (PLT) als eigene Zeitreihe unabhängig vom eingestellten Messintervall immer als 10 min Intervall ausgegeben.

Datum/Zeit	17.10.2013 09:30	06:50:00									
Datum	Zeit	UL1 Ç	UL2	UL3	UL1 max	UL2 max	UL3 max	UL1 min	UL2 min	UL3 min	
07.10.2013	09:30:00	232,56	232,539	233,323							
07.10.2013	09:35:39					233,004					
07.10.2013	09:35:44						233,999				
07.10.2013	09:38:16				233,124						
07.10.2013	09:39:01							230,728			
07.10.2013	09:39:01								230,506	231,44	
07.10.2013	09:40:00	232,572	232,487	233,394							
07.10.2013	09:40:27						233,874				
07.10.2013	09:43:50								231,299	232,322	
07.10.2013	09:49:00				233,116						
07.10.2013	09:49:00					233,107					
07.10.2013	09:49:30							231,209			
07.10.2013	09:50:00	232,51	232,412	233,318							

8.4.8 Zusatzfunktionen

Über den Menüpunkt "Fenster/Aufteilen" ist es möglich alle bisher ausgewählten Auswertungen übersichtlich in einem Bild miteinander darzustellen.

Die Felder "Information" oder "Übersicht Messdaten" können geschlossen werden, um mehr Platz für die Auswertegrafik zu bekommen. Über das Feld "Ansicht" ist es möglich diese wieder zu aktivieren.

Zwei unterschiedliche Messungen miteinander vergleichen.

Es ist möglich, während einer Auswertung, eine weitere Messung zu öffnen, Pegel-Zeitdiagramme und Normauswertungen zu starten und diese in einem Bild nebeneinander darzustellen und miteinander zu vergleichen.

Bild: Zwei unterschiedliche Messungen miteinander dargestellt (2 x EN50160 Bericht; 2 x Pegel-Zeitdiagramm)

9. Grenzwerte und Einstellungen multilog 2

Mit dem Icon "Setup" Aben Sie die Möglichkeit Geräteparameter, Triggerbedingungen und Grenzwerte des multilog 2 zu ändern.

est.					Aufesen Setup Messgerät
	Ϋ́ι				Neues Setup an Messgerät sonde
1	Konfiguration	in anu		ñ	Offnen Vorlage
	Spannungssystem:	etz O SLeiter Netz	1Letter-Anschus (L190)		.speichern Wirlage
	Martechnung Aufleichen	Ung Bezeichnung Hessauftrag		-	Grundeinstellung
undenstellung	no sparrurg - Tor take				
1.01	U: V-Schaltung	T1 Aron-Schaltung	Wander Obersetzungsfakto		
	81	81	18,1	1.	
	5	ü	14.2	1	
CHERIZWEISE	R_78_9		- us	1	
			-	-	
	1	the sale as	UNE	19	
Oszilloskop	เปิเชิเชิทีโย	H 2 3 h	11r	1	
	Messparameter	Leistungamesau	ng Ib		Start Messgerät
	Nernspannung LE / LL [V]: 230,00	208,32 @ nech 001	H0110-2		Stopp Messger at
	Mesanterval (sec):	600 Anschlus	sleistung ¹²	10	
ns RMS Rekorder	Intervaldauer Leistung	nin • Ursynne	etin- Die ung	1	
	Rundsteuerrecorder An / Aus	Fidedurve	AUX-Eingang:		
	Preisvenz - Rundsteuer (Hz)	268	Bezeidnung:		
	Bandonite (Hz)	3 🔹 200 v Ku	M Erheit		
ansientenkarte	Autombrungsdauer (sec)	60 C 120 V Ku	Office:		
100	Tragerpegel (% UK)	0.5	Wanderfakter:		
	2 Zeitsteuerung PQ-Box				
	Bitte beachten Ge: Der Starthetts eftit der Mensurei muss mersend	in Interval up Beijen des essentisten Mes	central areas largers.		Synchronisation Uhrzeit
Update	de nech ferm nur komplette Intervalle zur Aus	vertung herongestigen werden.		1.00	🕑 Autom, synchronisieren
	Startbedenkt	Endrergunkt	100 Total 100 Total 100	11	

Auslesen Setup Messgerät	Laden der aktuellen Einstellungen aus dem Netzanalysator
Neues Setup an Messgerät senden	Sendet die geänderten Einstellungen an das Messgerät
Öffnen Vorlage	Öffnet eine Vorlagedatei auf dem PC
Speichern Vorlage	Speichert eine Setup-Einstellung auf dem PC als Vorlage. Es werden alle Einstellungen auf allen Karten gespeichert.
Grundeinstellung	Setzt alle Grenzwerte und Triggereinstellungen aller Karten auf die Grundeinstellung
Start Messgerät Stopp Messgerät	Mit dieser Funktion kann auf dem Messgerät eine Messung ge- startet und gestoppt werden.
Synchronisation Uhrzeit	Synchronisiert die Uhrzeit multilog 2 auf die PC-Zeit
Auto-Synchronize	Ist dieses Feld aktiviert, so wird die multilog 2 automatisch mit dem Senden des Setups auf den PC synchronisiert.

9.1 Setup - Grundeinstellungen

Geundeinstellungen werden Einstellungen wie Netzform, Nennspannung und Übersetzungsverhältnis von Strom- und Spannungswandler vorgenommen.

● ^{4-Leiter} ● ^{3-Leiter} Mit der Einstellung 3-Leiter oder 4-Leiter Netz unterscheidet das Gerät die zu mesende Netzform. In einem isolierten 3-Leiter Netz, werden alle Bewertungen der Norm EN50160 aus den Leiter-Spannungen berechnet. In einem 4-Leiter Netz (geerdetes Netz) werden alle Power-Quality-Parameter aus den Strangspannungen ermittelt.

	in der 1-Leiter Mess	ung wird nur Messwerte d	ier Phase LT, N und P	'E ertass
Konfiguration				
Netzwerk:	50 Hz	🔘 60 Hz		
Spannungssystem:	4 Leiter-Netz	🔘 3 Leiter-Netz	🔘 1 Leiter-Anschluss [L1	-PEN]
Aufzeichnung "nur Spannung"	Aufzeichnung "nur Basisdaten"	Bezeichnung Messauftrag		
Strom- Spannungswandler			Wandler-Überset	tzungsfaktor
U: V-Schaltung	I: Aro	n-Schaltung	UL1	
			UL2	
Ĩaliasjē⁺Aliasjē ſ₩□. ſ₩□. "	P1,P \$1,/ }\$	2 91 22 21 2 2 21	UL3:	
		 Խ	UNE	
L17 L2 ² L37 N7 ⁻¹	т е (н)	12 13 1 _E	n:	
Messparameter		Leistungsmessung	12:	
Nennspannung LE / LL [V]:	230,00	398,37 (O) nach DIN40110	0-2	
Messintervall [sec]:		600 Anschlussleist	ung I3:	
Totop all davias Laistuna	15 min	Unsymmetrie-	IN:	

Es ist möglich einen Messauftrag vor einer Messung mit einem Text (maximal 32 Zeichen) zu beschriften. Nach dem Übertragen der Messdaten auf den PC, findet man diesen Text unter "Einstellungen Messgerät" wieder.

Mesagerät:	PQBGK100 Ver:01.142 Sni1126-302 [COM12]			0.0	Auslesen Setup Mesogerät
	i i come come				Neues Setup on Messgerät sender
	Konfiguration				Synchronisation Uhrzeit
	Netmierks	S0 Hz	60 Hz		TAutors. Synchronisieren
	Spannungssystem:	4Leter-Netz	O 3 Letter-Netz	-	Offnen Vorlage
Grundeinstellung	🖾 Aufzeichnung "nur Spennung"	Dezeichnung Messauf	frag		Southern Walace
	Stron-Spannungsvander				Gundensteking

Speziell Schaltungsarten für Sekundärwandlersysteme:

U: V-Schaltung

Sind die Spannungssekundärwandler im Mittel- oder Hochspannungsnetz in V-Schaltung geschaltet, wird diese Funktion aktiviert. Der Spannungsanschluss U2 liegt auf Erde.

I: Aron-Schaltung

Liegen die Stromwandler im Mittel- oder Hochspannungsnetz in Aronschaltung vor, wird diese Funktion verwendet. Der Strom I L2 wird nicht angeschlossen und vom multilog 2 berechnet.

Nennspannung [V]: 400

Das multilog 2 bezieht alle Triggerschwellen oder PQ-Ereignisse auf die eingestellte Nennspannung. Als Nennspannung wird im 3-Leiter Netz die vertraglich vereinbarte Leiter-Leiter Spannung angegeben z.B. 20400V. Im 4-Leiter Netz wird die Leiter Erdspannung angegeben z.B. 230V.

Messintervall [sek]:

10

Das Messintervall des multilog 2 kann frei, im Bereich von einer Sekunde bis 1800 Sekunden, eingestellt werden. Die Grundeinstellung beträgt 10 Minuten, da dies in der Norm EN50160 und IEC61000-2-2 als Intervall fest vorgegeben ist.

9.1.1 Größe der Messdaten

Die Einstellung des Messintervalls auf Werte kleiner als 60 Sekunden ist nur für kurze Messzeiträume (wenige Stunden) geeignet, da hier sehr große Datenmengen vom Messgerät aufgezeichnet werden. Das Messgerät erfasst über 2.250 verschiede Messwerte parallel.

Beispiele der Datengröße von den Langzeitdaten. Die Störschriebe erhöhen den Speicherbedarf zusätzlich:

- ein Messintervall von 10 Minuten erzeugt eine Datengröße von ca. 10 MByte in einer Woche - ein Messintervall von 1 Sekunde erzeugt eine Datengröße von ca. 10 MByte in 30 Minuten

Die anfallende Datengröße kann über zwei Wege eingeschränkt werden.

a) Aufzeichnung nur Spannung

In dieser Einstellung werden keine Ströme und Leistungen erfasst. Die anfallende Datenmenge reduziert sich auf ca. 40%.

"nur Basisdaten"

b) Aufzeichnung nur Basismessdaten

Basismessdaten beinhaltet folgende Messdaten: (es fehlen die Harmonischen / Zischenharmonischen/ Phasendifferenz) Alle Recorder sind nach wie vor aktiviert.

Status, Events, Flagging
Netzfrequenz
Extremwerte Frequenz
Spannungsmessgrößen
Spannungsextremwerte, Flickerbemerkbarkeit
Strommessgrößen
Stromextremwerte
Leistungsmessgrößen
Extremwerte Leistungen
Rundsteuersignal
THC, K-Faktor, Phasendifferenz, Mit-, Gegen-, Nullsystem
Verzerrungsblindleistung, Leistungsflußrichtung, Phasendifferenz
Spannungsextremwerte, Rundsteuersignalextrema
Spannungsabweichung, Symmetrie, PWHD
Stromwerte, symmetrische Komponenten, Unsymmetrie, PWHD, PHC
Leistungsmesswerte, cosPhi, sinPhi, tanPhi, Grundschwingungsleistungen
Grundschwingungsverschiebungsblindleistung
Blindleistungsextremwerte
Scheinleistungsextremwerte
Leistungsmessgrößen
15-Minuten-Intervall
Verzerrungsblindleistung, Leistungsflußrichtung, Phasendifferenz
Leistungsmesswerte, cosPhi, sinPhi, tanPhi, Grundschwingungsleistungen
Grundschwingungsverschiebungsblindleistung
Spannungsmessgrößen

Eine Messung im 1sec Intervall über 1h benötigt ca. 6,6 Mbyte.

Damit ergibt sich für die 1 Gbyte Karte eine berechnete maximale Aufnahmedauer von ca. 6,6 Tagen.

Wandlerfaktor Einstellung

UL1	1
UL2:	1
UL3:	1
UNE	1
11:	1
12:	1
13:	1
TNI-	- 1

In den Wandlereinstellungen ist das Übersetzungsverhältnis der Strom- und Spannungswandler, an denen der Netzanalysator angeschlossen wird, einzutragen.

Beispiel:

Spannung:primär = 20.000V; sekundär = 100V; Wandlerfaktor UL1 = 200Strom:100A / 5A = Wandlerfaktor 20

Intervall der Leistungen:

Alle Leistungswerte werden zusätzlich zum frei einstellbaren Intervall mit 10, 15 oder 30 Minuten Intervallen aufgezeichnet. Diese Intervalle beginnen immer synchron zu den vollen Stunden.

15 min	-
--------	---

Grundeinstellung der Leistungsberechnung

Die Leistungsberechnung in der Gerätefirmware kann zwischen zwei Messfunktionen ausgewählt werden:

- Leistungsberechnung nach DIN40110-Teil 2 mit Berechnung der Unsymmetrie-Blindleistung (ist die Werkseinstellung des Gerätes)
- Vereinfachte Leistungsberechnung ohne Beachtung der Unsymmetrieblindleistung in den 3~Phasenleistungen.

Diese Einstellung hat Einfluss auf die Leistungsmesswerte im Gerätedisplay, den Onlinedaten und den aufgezeichneten Messdaten.

Rundsteuersignalanalyse:

168
4
60
0.5

Im Feld Rundsteuerfrequenz kann eine beliebige Frequenz im Bereich von 5 Hz bis 3750 Hz vorgegeben werden. Diese wird nun permanent als 200 ms-Maximalwert in den zyklischen Daten aufgezeichnet.

Option Rundsteuersignalanalyse:

Ist die Option Rundsteuersignalanalyse im Gerät frei geschaltet, kann ein zusätzlicher Rekorder für diese Frequenz gestartet werden. Der Rekorder erfasst alle Spannungen und Ströme des Rundsteuersignales.

Es können die Aufzeichnungsdauer, die Bandbreite des Filters, sowie der Triggerpegel für diesen Rekorder, eingestellt werden. Die maximale Aufzeichnungsdauer beträgt 210 Sekunden.

Ist die Geräteoption "Rundsteuer" freigeschalten, so erkennt man dies auf der letzten Displayseite des mulitlog 2 mit der Bezeichnung: multilog 2 Light / Expert + S

Rundsteuerrekorder aktiv Der spezielle Rundsteuerrekorder kann ein- und ausgeschaltet werden

Achtung: Der Rundsteuerrekorder kann große Datenmengen erzeugen und sollte nur eingeschaltet werden wenn gezielt eine Störung im Signalverlauf gesucht wird.

Das multilog 2 über Zeitauftrag programmieren

Es ist möglich das multilog 2 über einen voreingestellten Zeitauftrag zu starten und zu stoppen.

Beispiel: Das multilog 2 soll von 0:00 Uhr bis 3:00 Uhr mit einem 1 Sekunden Intervall zeitgesteuert einund ausschalten.

Zeitsteuerung PQ-Box			
Bitte beachten Sie: Der Startzeitpunkt der Me da nur komplette Interval Startzeitpunkt	essung muss zwingend im Interval le nach Norm zur Auwertung beni	ll vor Beginn des eigentlichen Messzeitra utzt werden dürfen. Endzeitpunkt	aumes liegen,
01.02.2013	▼ 09:00:00	08.02.2013	▼ 09:00:00

Wird die Starttaste auf dem multilog 2 vor dem Messauftrag betätigt, so fängt das Gerät sofort mit der Aufzeichnung an.

Wird die Stopptaste vom multilog 2 vor dem Ende des Messauftrages betätigt, so wird die Messung sofort angehalten.
Uhrzeit des multilog 2 einstellen:

PC - Datum:	06.09.2012	Datum Messgerät:	01,01,1990
PC - Uhrzeit:	12:00:22	Uhrzeit Messgerät:	01:00:00

Synchronisation Uhrzeit Synchronisiert die Uhrzeit des multilog 2 auf die PC-Zeit im Augenblick der Tastenbetätigung. Die Uhrzeit des multilog 2 wird hiernach nicht permanent in der Anzeige weitergeführt.

9.2 Setup – Grenzwerte EN50160 / IEC61000-2-2 / IEC61000-2-4

Greavete In diesem Menüpunkt sind alle Grenzwerte der Norm EN50160 und IEC61000-2-2 voreingestellt. Die Verträglichkeitspegel können vom Benutzer verändert werden.

Über die Schaltfläche Grundeinstellung werden die Grenzwerte wieder auf die Normwerte zurückgesetzt.

Da die EN50160 nur Grenzwerte für Harmonische bis zur 25. Ordnungszahl vorgibt, wurden in den Grundeinstellungen des multilog 2 die Verträglichkeitspegel der IEC61000-2-2 für die 26. bis 50. Oberschwingung hinterlegt.

Die Schaltfläche Öffnen Vorlage bietet die Möglichkeit, verschiedene auf dem PC gespeicherte Konfigurationen zu öffnen. In den Vorlagen sind auch die Grenzwertdateien IEC61000-2-4 für Industrienetze hinterlegt.

Mit dem Icon Neues Setup an Messgerät senden können beliebig viele Einstellungsvorlagen für das multilog 2 gespeichert werden.

THD Berechnung

THD - Berechnung	Die Berechnung der THD Werte der Spannungen
	und Ströme sind im Gerätesetup einstellbar.
H2 - H40	- H2 bis H40 (Messung nach EN50160)
🔘 Н2 - Н50	- H2 bis H50 (Messung nach IEC61000-x-x)

9.3 Triggereinstellungen Oszilloskopbild

Oszilleskop Im Menüpunkt "Oszilloskop" können Auslösekriterien für Oszilloskopbilder gesetzt werden. In der Grundeinstellung ist eine Effektivwertschwelle von +10% und -10% der Nennspannung eingestellt.

Ist ein Feld grau hinterlegt und nicht markiert, so ist dieses Triggerkriterium nicht aktiv. Alle Triggerbedingungen können parallel betrieben werden und sind "oder verknüpft".

	[%]	1		[%]	1	[%]		[9]		[%]
UL1:	7	90	V	110		10		6		20
UL2:		90		110		10		6		20
UL3:	V	90		110		10		6		20
JNE:				30		10				20
J12:		90	6	110		10	E	6		20
J23:		90		110		10		6		20
J31:	E	90		110		10		6		20
	[A]	1		[A]	_	[A]				
IL 1:		10		110		10				
IL2:	E	10		110		10				
IL3:	E	10		110		10				
IN:				10	E	10				
Hüllkı	ırventrigger									
Hüllkı	irventrigger									
Hüllkı Totze	urventrigger eit Hüllkurventr	rigger [s]:				-				1
Hüllkı Totze Hyste	urventrigger eit Hüllkurventr erese	rigger [s];				-				1
Hüllkı Totze Hyste	urventrigger sit Hüllkurventr erese erese 10ms RM	rigger [s]: 15 Spannu	ng [%]:	2	Ну	rsterese 10	ms RN	1S Strom	[%]:	3
Hüllkı Totze Hyste Hyste	urventrigger eit Hüllkurventr erese erese 10ms RM	rigger [s]: 45 Spannu e / Vorgesc	ng [%]: hichte	2	Ну	vsterese 10	ms RN	IS Strom	[%]:	3

Die "Aufzeichnungsdauer" ist die gesamte Aufzeichnungszeit für das Oszilloskopbild in Millisekunden. Als "Vorgeschichte" wird die Zeit definiert, die vor dem Eintreten des Ereignisses aufgezeichnet wurde. Die Länge des Oszilloskopbildes, sowie die Vorgeschichte können frei von **20ms bis 4.000 Millisekunden** verändert werden.

Automatik Trigger für Oszilloskoprekorder: Ist dieses Feld aktiviert, dann verändert das multilog 2 selbstständig alle auf dieser Seite aktivierten Triggerschwellen, im Falle eines zu empfindlich eingestellten Grenzwertes. Dies verhindert, dass unnötig große Datenmengen aufgezeichnet werden. Der "Automatik Trigger" greift hierbei in iede einzelne Schwelle selektiv ein und erhöht diese. Sollte die Netzstörung, welche den Triggerwert permanent verletzt abklingen, so wird der Grenzwert automatisch auf den vorher eingestellten Wert zurückgestellt.

Erklärung der Triggerbedingungen:

ind die Triggerschellen in "%" angegeben, so bezieht sich dieser Wert auf die im Setup eingestellte Nennspannung; z.B. 20.300V oder 400V

Untere Triggerschwelle	Startet eine Triggeraufzeichnung bei Unterschreitung der eingestellten
[%]	Triggerschwelle. Triggergrundlage sind die 10ms Effektivwerte.
Obere Triggerschwelle	Startet eine Triggeraufzeichnung bei Überschreitung der eingestellten
[%]	Triggerschwelle. Triggergrundlage sind die 10ms Effektivwerte.
Effektiwertsprung	Startet eine Triggeraufzeichnung bei einem Effektivwertsprung in eingestellter
[%]	Höhe. Triggergrundlage sind die 10ms Effektivwerte.
Phasensprung	Startet eine Triggeraufzeichnung bei einem Phasensprung.
[°]	Triggergrundlage ist eine Verschiebung der Sinusnulldurchgänge in " ° "
Hüllkurventrigger [%]	Startet eine Triggeraufzeichnung bei einer Sinusverletzung. Das Messgerät ermittelt eine Verletzung der Sinuskurve auf Abtastebene. (z. B Kommutierungseinbrüche). Eine sinnvolle Einstellung des Schwellwertes liegt bei 10% bis 25%.

Beispiel für einen Kommutierungseinbruch:

Totzeit Hüllkurventrigger:

Der Hüllkurventrigger kann in sehr kurzer Zeit eine sehr große Anzahl von Oszilloskopbildern erzeugen. Um die Datenmenge zu verringern kann man eine feste Pausenzeit zwischen den einzelnen Rekordern einstellen.

Beispiel: Totzeit = 5 Sekunden

Am Ende einer Aufzeichnung eines Oszilloskopbildes ist die Triggerbedingung "Hüllkurventrigger" für 5 Sekunden deaktiviert. Alle anderen Triggereinstellungen arbeiten ohne Totzeit weiter.

Hysterese:

In der Norm IEC61000-4-30 ist eine Hysterese für Ereignisse vorgesehen. Beispiel: Grenzwert für einen Spannungseinbruch = 90% - Hysterese = 2% Der Netzeinbruch beginnt mit der Unterschreitung der 90% Grenzwertlinie und ist beendet, wenn die Netzspannung 92% (+2%) wieder erreicht.

9.4 10ms Effektivwert-Rekorder

^{10ms RMS Rekorder} Im Menüpunkt "10ms RMS Rekorder" können Auslösekriterien für Effektivwert-Rekorder gesetzt werden. In der Grundeinstellung ist eine Effektivwertschwelle von +10% und -10% der Nennspannung eingestellt.

Nur die Schwellwerte mit einem Haken sind aktiv, Triggerbedingungen ohne Haken sind nicht eingeschaltet.

	Untere Tri	ggerschw <mark>e</mark> lle [%]	Obere Tri	ggerschw <mark>e</mark> lle [%]	Effekt	iwertsprung [%]	P	hasensp [°]	rung
UL1:		90		110		10			е
UL2:	V	90		110		10			e
UL3:		90		110		10			е
UNE:				30		10			
U12:		90		110		10			e
U23:		90		110		10	E		E
U31:		90		110		10			E
		[A]	2	[A]		[A]	9 23		
IL 1:		10		110		10			
IL2:	1	10		110		10			
IL3:		10		110		10			
IN:				10		10			
Hysterese	V Autom	atik Trigger							
Hysterese Hysterese	V Autom	atik Trigger pannung [%];	2 H1	/sterese	10ms RMS St	rom [٩	%]:	2
Hysterese Hysterese Aufzeichnu	V Autom	atik Trigger pannung [% iorgeschichte	1:	2 H	/sterese	10ms RMS St	rom [9	%]:	2

Die "Aufzeichnungslänge" ist die gesamte Aufzeichnungszeit für das Oszilloskopbild in Millisekunden. Als "Vorgeschichte" wird die Zeit definiert, die vor dem Eintreten des Ereignisses aufgezeichnet wurde.

Die Länge der Aufzeichnung, sowie die Vorgeschichte können frei von **20ms bis 2 Minuten (120.000 Millisekunden)** verändert werden.

Automatik Trigger für 10ms Rekorder: Ist dieses Feld aktiviert, dann verändert, im Falle eines zu empfindlich eingestellten Grenzwertes, das multilog 2 selbstständig alle auf dieser Seite aktivierten Triggerschwellen. Dies verhindert, dass unnötig große Datenmengen aufgezeichnet werden und das Gerät permanent die gleichen Bilder festhält. Der "Automatik Trigger" greift hierbei in jede einzelne Schwelle selektiv ein und erhöht diese. Sollte die Netzstörung, welche den Triggerwert permanent verletzt abklingen, wird der Grenzwert automatisch auf den vorher eingestellten Wert zurückgestellt.

9.5 Firmwareupdate multilog 2

^{Update} Im Menüpunkt "Update" kann ein Update der Firmware des Netzanalysators durchgeführt oder das Gerät über einen Lizenzcode mit mehr Funktionen ausgerüstet werden.

Reihenfolge für ein Geräteupdate multilog 2

- 1. multilog 2 von Spannungsversorgung trennen (auch USB trennen)
- 2. Beide Tasten "Start/Stop" und "Blättern" gemeinsam gedrückt halten
- 3. multilog 2 mit Spannung versorgen (Messleitung oder USB)
- 4. Gerät zeigt nun im Display: "Waiting for Download"
- 5. Menü Einstellungen / Update in der SW öffnen
- 6. Update-Datei "PQBoot" auf Messgerät laden
- 7. Update-Datei "MCU-Application" auf Messgerät laden
- 8. Update-Datei "DSP-Application" auf Messgerät laden
- 9. multilog 2 von Spannungsversorgung trennen (auch USB trennen)
- 10. Beim nächsten Gerätestart wird die Firmware im Gerät installiert.

Setup Messgerit			
rupriti (QBCX 100 Her (01, 142 Sri 1126-303 [COM 12]	Audexen Setup Messgerät senden Nexes Setup an Messgerät senden Syndhonisation (Arseit Autor, Syndhonisation (Arseit Autor, Syndhonisation Officer Vorlage Spechem Vorlage Grundenstellung	
Grenzwerte Oszilloskop	Litera Messgerät Serienrummer Litera Code: Update Litera	nät abfrägen Start Messger M	Lizenzupdate: multilog 2 light auf multilog 2 expert oder Rundsteueranalyse aufrüsten.
Update		Stopp Hexageriat	

9.6 Lizenzupdate multilog 2

Über die Schaltfläche Messgerät abfragen erscheint bei angeschlossenem Messgerät die Seriennummer des multilog 2. Im Feld "Lizenz Code" geben Sie den Lizenz Code per Angabe des Verzeichnisses oder per Tastatur in das Feld ein. Wenn der Lizenzcode zur Seriennummer des Gerätes passt, wird das Feld "Update Lizenz" aktiv.

9.7 Data Converter

Mit dem Programm "Data Converter" ist es möglich, Korrekturen an einer vorhandenen Messdatei, durchzuführen. Wurde bei einer Parametrierung eines multilog 2 eine falsche Nennspannung oder ein falscher Stromwandlerfaktor angegeben, so kann dies hier nachträglich geändert werden.

- > Änderung der Nennspannung z. B. von 400V auf 20.000V
- > Änderung des Stromwandlerfaktors z.B. von 1:1 auf 1:10

- 1) Öffnen Sie die zu ändernde Messdatei mit "Laden"
- 2) Geben Sie den richtigen Spannungswert oder Stromwandlerfaktor ein
- 3) Mit "Ausführen" werden die Messdaten nun umgerechnet und in einer Kopie der Originaldatei abgespeichert. Zu erkennen an der Bezeichnung "New" im Kommentarfeld Nr. 4

👫 WinPQ Daten	konverter			? ×
Messdatei: EMPT	TY EMPTY			Laden
Nennspannung (V):	400		Aucführen
Geänderte Nenns	pannung (V):	400		Austumen
Stromwert				
	Original Stromfakto	or Neue	er Faktor	
1 <u>1</u>	1		10	
1 <u>2</u>	1		10	A
I <u>3</u>	1			Austunren
IN	1		10	
Wandlerfaktor	10,00	-		
Auswahl Sprache]			OK Cancel

Mit dem Programm **"Data Converter"** können verschiedene Teilmessungen zu einer Gesamtmessung zusammengefügt werden.

- 1) Öffnen Sie die zu ändernden Messdateien mit "Laden"
- 2) Markieren Sie zwei oder mehr Dateien
- 3) Mit "Verbinden" werden diese Messdateien nun zusammengefügt und in einer neuen Messdatei gespeichert.

estplatte Import PQ	Box 100						
erzeichnis: G:\Messdate	n\20120123_	1244_000					 Laden
Datum	Version	Größe	Kommentar 1	Kommentar 2	Kommentar 3	Kommentar 4	<u> </u>
04.09.2012 16:18:07	V01.142	308 KB	Kommentar 1	Kommentar 2	Kommentar 3	Kommentar 4	Verbinde
04.09.2012 16:03:19	V01.142	152 KB	Kommentar 1	Kommentar 2	Kommentar 3	Kommentar 4	 =
04.09.2012 16:03:19	V01.142	152 KB	Kommentar 1	Kommentar 2	Kommentar 3	Kommentar 4	Löschen
04.09.2012 16:02:10	V01.142	152 KB	Kommentar 1	Kommentar 2	Kommentar 3	Kommentar 4	
04.09.2012 16:01:26	V01.142	152 KB	Kommentar 1	Kommentar 2	Kommentar 3	Kommentar 4	
14.09.2012 16:00:50	V01.142	152 KB	Kommentar 1	Kommentar 2	Kommentar 3	Kommentar 4	Abbruch

10. Online-Analyse: multilog 2 & PC

Über die Funktion "Online-Analyse" werden Effektivwerte, Oszilloskopbilder, Harmonische, Zwischenharmonische, sowie Leistungsflussrichtung der Harmonischen online am Bildschirm eines PC's oder Laptops dargestellt. Die angezeigten Daten werden im Sekunden-Intervall aufgefrischt.

Die Onlinemessung ist während einer laufenden Messung, vor einer gestarteten, sowie nach einer beendeten Messung, möglich. Alle Karten können über die Icons 💽 💽 gestartet und angehalten werden.

10.1 Online - Oszilloskopbild

Über die Karte "Oszilloskop" werden Online-Oszilloskopbilder aller Messkanäle auf dem Bildschirm dargestellt.

10.2 Online – FFT - 5.000 Hz

Mit der Messfunktion FFT - 5000 Hz wird das Spektrum aller Harmonischen und Zwischenharmonischen von DC bis 5.000 Hz online dargestellt.

Im Menü "rechte Maustaste" stehen folgende Funktionen zur Verfügung:

Drucken: Zwischenablage: Inkl. DC: Inkl. Grundschwingung: Achsen teilen: Aktuelles Bild wird an den Drucker gesendet Das Spektrum wird in die Windows-Zwischenablage kopiert DC-Anteil kann in der Grafik ein- und ausgeblendet werden Grundschwingung kann in der Grafik ein- und ausgeblendet werden Trennt den Bildschirm für Spannungen und Ströme in zwei Bereiche

Maximalwerte aufzeichnen:

Mithilfe dieser Funktion ist es möglich, die Maximalwerte der Spektrallinien der Online FFT festzuhalten. (gestrichelte Linie). So ist es möglich bereits online über einen Zeitraum festzustellen ob erhöhte Oberschwingungspegel im Bereich bis 5 KHz an der Messstelle auftreten.

10.3 Online - Harmonische

Über die Karte "Harmonische" werden alle Strom- und Spannungsoberschwingungen (2. bis 50.) online dargestellt. Die Messdaten werden vom Messgerät gemäß der IEC61000-4-30 Klasse A berechnet und an den PC übertragen.

Auch hier stehen viele Funktionen über das Menü "rechte Maustaste" zur Verfügung.

10.4 Online - Zwischenharmonische

Über die Karte "Zwischenharmonische" werden alle Strom- und Spannungszwischenharmonische bis 2.500 Hz online dargestellt. Die Messdaten werden vom Messgerät gemäß der IEC61000-4-30 Klasse A nach dem Gruppierungsverfahren berechnet und an den PC übertragen.

Erklärung zum Gruppierungsverfahren nach IEC61000-4-7:

Zum Bewerten der Zwischenharmonischen im Netz werden Untergruppen gebildet. Es werden jeweils alle Zwischenharmonische zwischen zwei Harmonischen zu einer Harmonischenuntergruppe zusammengefasst. Beispiel für 50Hz: Interharmonische H2 enthält die Frequenzen 105Hz bis 145Hz.

10.5 Online – Richtung der Harmonischen

Über die Karte "Richtung Harmonische" wird die Leistungsflussrichtung der Harmonischen am Messpunkt dargestellt. Eine Skalierung im positiven Bereich (+) bedeutet eine Leistungsflussrichtung vom Netz zum Verbraucher (im Beispiel die 11. Harmonische). Liegt der Messwert in der negativen Skala (-) liegt eine Leistungsflussrichtung vom Verbraucher in das Netz vor.

 $\mathsf{P}_2 = \mathsf{U}_2 \, \mathsf{x} \, \mathsf{I}_2 \, \mathsf{x} \, \mathsf{cos} \phi_2$

Bemerkung:

In einem mit Spannungsharmonischen vorbelasteten Netz ist die Aussage der Richtung der Harmonischen nicht immer sicher. Je größer die Belastung des Netzes mit einer Stromharmonischen vom Verbraucher ist und je geringer das Netz mit Spannungsharmonischen vorbelastet ist, desto größer ist die Aussagekraft dieses Vorzeichens auf den Verursacher von Harmonischen im Netz.

10.6 Online Pegel-Zeitdiagramm

Im "Online Pegel-Zeitdiagramm" können über einen einstellbaren Zeitraum (1, 3, 5 oder 10 Minuten) Spannungen, Ströme und Leistungen beobachtet werden. Über das Menü der rechten Maustaste können die Skalierungen angepasst werden oder das Bild in die Zwischenablage kopiert werden. Mit der Funktion "Anzeige löschen" werden die Messdaten im Bild gelöscht.

10.7 Online - Details Messwerte

Über die Karte "Details" werden Wirk-, Blind- und Scheinleistungen der Einzelphasen und auch dreiphasigen Werte online dargestellt. QV zeigt die Grundschwingungsblindleistung und D die Oberschwingungsblindleistung an.

Des Weiteren werden der Leistungsfaktor und die Phasenwinkel der Grundschwingung des Netzes angezeigt.

nine Messung								-			
	nin andre san beier	1000								Frequenz	
COC100 Merco1.1	al 2450002-305 (COL	M [4]				×	60			Pi I	0.00
Roskop ITT	Spektrum Harmon	nische Zwi	ischenharmonisc	he Richtung H	larm Pegel-Zeitz	dagramn De	etals Messwerte	Zeigerdiegramm	Leistungsdreieck	Spennung	
										UL1	0.067
										UL2:	0.09
										UL2:	0.07
							1000			UNE	0.023
	Leistung				Leistungsfaktor		THO			U121	0.02
	P1:	0.008 W			PF1:	0.201	THD UL1:	0.00 %		U23:	0.148
	P2:	0.012 W			PF2:	0.274	-			U31:	0.130
					1611	.0.309	THE GLASS	0.00 %		Strom	
	P3;	-0.030 W				-0.507	THD UL3:	0.00 %		II:	0.000
	P total:	0.011 W			PF total:	0.083	Turking (0.02.00		12:	0.000
	_				Harmondal		ine one:	0.00 %		13:	0.000
	51;	0.040 VA	D1:	0.018 Ver	PINESCHWINES		THD U12:	0.00 %		15:	0.000
	52:	0.045 VA	02:	0.021 Var	PHCE	77,42.*					
	-				PHL2:	72.23 *	THE U23:	0.00 %			
	225	0.031 \/4	030	0.014 18	PHL3:	-109.91*	THO USI:	0.00 %			
	5 total:	0.130 VA	D total:	0.053 Var			Part 1				
					C06 PHL1:	0.218	THD III	7.58 %			
	Q1:	0.039 Ver	QV1:	0.034 Var	cos PHL2:	0.305					
	Q2:	0.044 VM	QVZ:	0.038 Ver	cos PH 3:	-0.141	THD 12:	8.59 %			
	02	0.030.94	ON THE	A 475.94	S. 1999 (1997)	4	THO 12:	10.09 %			
	-	0.050 (18	4.0	0.040 Hat	Karzzetficker		II ARRANT A				
	Q total:	0.129 Var	QV total:	0.046 Var	Patte	0.000	THD IN:	11.00 %			
					Pet2:	0.000					
	ALIX				Pet la	0.000	Spannungsung	cymretrie			
	Messnert [mi/]				rata	0.000	UU:	0,00 %			

Erklärung der Leistungsmesswerte in den Onlinedaten

- P = Wirkleistung
- S = Scheinleistung
- D = Verzerrungsblindleistung / Oberschwingungsblindleistung

Q = Gesamtblindleistung $Q = \sqrt{Q_v^2 + D^2}$

QV = Grundschwingungsblindleistung

10.8 Online - Zeigerdiagramm

Mit der Funktion Zeigerdiagramm werden alle Spannungen und Ströme mit Betrag und Phasenwinkel grafisch dargestellt.

10.9 Leistungsdreieck

Auf der Karte "Leistungsdreieck" werden alle Leistungswerte in einer dreidimensionalen Grafik dargestellt. Unter dem Punkt 11.1 wird die Verzerrungsblindleistung näher erläutert. Es wird jeweils ein Leistungsdreieck für jede Phase, sowie für die Netzgesamtleistungen angezeigt.

Die Grafik stellt die einzelnen Leistungswerte einmal für den Gesamteffektivwert sowie für die Grundschwingungswerte dar.

11. Messdaten – Messverfahren multilog 2

Zyklische Messgrößen multilog 2

Bemerkung: Das Intervall entspricht dem frei einstellbaren Messintervall (1sec bis 30min)

Pro zyklischem Messintervall fallen 5604 Bytes an Aufzeichnungsdaten an. Reserviert man den halben Speicherplatz für zyklische Messdaten (500 MByte), so können 91360 Messintervalle geschrieben werden, bis der reservierte Speicherplatz erschöpft ist.

Stellt man das Aufzeichnungsintervall auf 10min, entspricht dies einer Aufzeichnungsdauer von 632 Tagen.

Zeichenerklärung: \checkmark = berechnet und abgespeichert \checkmark^* = berechnet und online Date

Primäre Messgrößen :

Zykluszeit	10ms	0.2s	1s	Inter-
Messgrößen				vall
Effektivwerte von $u_{1E/N}$, $u_{2E/N}$, $u_{3E/N}$, u_{NE} , u_{12} , u_{23} , u_{31} :	√*	√*	\checkmark	✓
$U_{1E/N}, U_{2E/N}, U_{3E/N}, U_{NE}, U_{12}, U_{23}, U_{31}$				
Effektivwerte von i_1 , i_2 , i_3 , $i_{\Sigma/N}$:	√*	√*	\checkmark	~
Ι ₁ , Ι ₂ , Ι ₃ , Ι _{Σ/Ν}				
Strang-Wirkleistungen :		√*	✓	~
P ₁ , P ₂ , P ₃				
Frequenz (Grundschwingung) :	√*	√*	√	✓
f			10s	
Effektivwerte von DC-Komponente und Grundschwingung			\checkmark	
für jeden der Messkanäle 18				

Abgeleitete Messgrößen :

Zykluszeit	10ms	0.2s	1s	Inter-
Messgrößen				vall
Normierte Harmonische der Spannungen (n=150)		√*	~	✓
von u _{1E/N} , u _{2E/N} , u _{3E/N} , u _{NE} , u ₁₂ , u ₂₃ , u ₃₁ :				
$U_{1E/N-n}, U_{2E/N-n}, U_{3E/N-n}, U_{NE-n}, U_{12-n}, U_{23-n}, U_{31-n}$				
Harmonische der Ströme (n=150)		√*	~	✓
von $i_1, i_2, i_3, i_{\Sigma/N}$:				
Ι _{1-n} , Ι _{2-n} , Ι _{3-n} , Ι _{Σ-n}				
Normierte Zwischenharmonische der Spannungen (n=049)		√*	~	✓
von u _{1E/N} , u _{2E/N} , u _{3E/N} , u _{NE} , u ₁₂ , u ₂₃ , u ₃₁ :				
$U_{1E/N-n+0.5}, U_{2E/N-n+0.5}, U_{3E/N-n+0.5}, U_{NE-n+0.5}, U_{12-n+0.5}, U_{23-n+0.5},$				
U _{31-n+0.5}				
Zykluszeit	10ms	0.2s	1s	Inter-
Messgrößen				vall
Zwischenharmonische der Ströme (n=049)		√*	~	✓
von i_1 , i_2 , i_3 , $i_{\Sigma/N}$:				
I _{1-n+0.5} , I _{2-n+0.5} , I _{3-n+0.5} , I _{Σ-n+0.5}				
Effektivwerte Rundsteuersignale auf $u_{1E/N}$, $u_{2E/N}$, $u_{3E/N}$, u_{NE} , u_{12} ,		√*	~	
U ₂₃ , U ₃₁ : U Rundsteuer (200ms)				
$U_{S1}, U_{S2}, U_{S3}, U_{SN}, U_{S12}, U_{S23}, U_{S31}$				
Energieflussrichtungen der Harmonischen (n=132)		√*	✓	✓
auf L_1 , L_2 , L_3 :				
FD _{1-n} , FD _{2-n} , FD _{3-n}				
Total Harmonic Distortion der Spannungen (240. Harmonische)		√*	~	√
von u _{1E/N} , u _{2E/N} , u _{3E/N} , u _{NE} , u ₁₂ , u ₂₃ , u ₃₁ :				
$THD_{1E/N}, THD_{2E/N}, THD_{3E/N}, THD_{NE}, THD_{12}, THD_{23}, THD_{31}$				
Total Harmonic Distortion der Ströme in %		√*	~	✓
(240. Harmonische)				
von i_1 , i_2 , i_3 , i_N : THD ₁ , THD ₂ , THD ₃ , THD _{Σ/N}				
Total Harmonic Currents in Ampere (240. Harmonische)		√*	~	~
von i ₁ , i ₂ , i ₃ , i _N :				
$THD(A)_1$, $THD(A)_2$, $THD(A)_3$, $THD(A)_N$				
K-Faktoren (Transformator Reduktionsfaktor) von i11, i2, i3, i $_{\Sigma/N}$		√*	~	~

$k_1, k_2, k_3, k_{\Sigma/N}$				
Mittelwert von I_1 , I_2 , I_3 , I_N		√*	~	~
Summen-Wirkleistung :	√*	√*	~	~
Р				
Strang-Scheinleistungen :		√*	✓	✓
S ₁ , S ₂ , S ₃				
Strang-Blindleistungen (m.Sgn.):	√*	√*	✓	✓
Q ₁ , Q ₂ , Q ₃				
Strang-Verzerrungsblindleistungen :		√*	✓	\checkmark
D ₁ , D ₂ , D ₃				
Summen-Scheinleistung, 3-/4-Leiter Netz	√*	√*	~	✓
n. DIN 40110 : S				
Summen-Blindleistung :	√*	√*	✓	✓
Q				
Summen-Verzerrungsblindleistung :		√*	✓	~
D				
Strang-Gesamt-Wirkenergien :		√*	✓	✓
E ₁ , E ₂ , E ₃				
Kollektive Gesamt-Wirkenergie :		√*	✓	✓
E				
Strang-Abgabe-Wirkenergien :		√*	✓	✓
-E ₁ , -E ₂ , -E ₃				
Kollektive Abgabe-Wirkenergie :		√*	✓	✓
-E				
Strang-Bezugs-Wirkenergien :		√*	~	~
E ₁ , E ₂ , E ₃				
Kollektive Bezugs-Wirkenergie :		√*	✓	✓
+E				
Strang-Gesamt-Blindenergien :		√*	✓	✓
EQ ₁ , EQ ₂ , EQ ₃				
Kollektive Gesamt-Blindenergie :		√*	✓	\checkmark
EQ				
Abgegebene (induktive) Strang-Blindenergien:		√*	✓	\checkmark
-EQ ₁ , -EQ ₂ , -EQ ₃				
Abgegebene (induktive) Kollektive Blindenergien :		√*	~	\checkmark

-EQ Netz				
Zykluszeit	10ms	0.2s	1s	Inter-
Messgrößen				vall
Bezogene (induktive) Strang-Blindenergien:		√*	✓	√
+EQ ₁ , +EQ ₂ , +EQ ₃				
Bezogene (induktive) Kollektive Blindenergie:		√*	\checkmark	\checkmark
+ EQ Netz				
Wirkfaktoren :			~	~
PF ₁ , PF ₂ , PF ₃ , PF				
Blindfaktoren :			✓	√
QF ₁ , QF ₂ , QF ₃ , QF				
Anzeigefunktion Wirkfaktor :			~	~
Y ₁ , Y ₂ , Y ₃ , Y				
Phasendifferenz Spannung-Strom (Grundschwingung) :		√*	~	√
φ ₁ , φ ₂ , φ ₃				
Phasendifferenz Spannung-Referenzspannung (Grundschwin-	√*	√*	✓	~
gung) von u _{1E/N} , u _{2E/N} , u _{3E/N} , u _{NE} , u ₁₂ , u ₂₃ , u ₃₁ :				
$\phi_{1\text{E/N}},\phi_{2\text{E/N}},\phi_{3\text{E/N}},\phi_{\text{Ne}},\phi_{12},\phi_{23},\phi_{31}$				
Drehsinn (Grundschwingung):		√*		
Flickerstärken von $u_{1E/N}$, $u_{2E/N}$, $u_{3E/N}$:				~
Pst _{1E/N} , Pst _{2E/N} , Pst _{3E/N}				
Flickerstärken von u_{12} , u_{23} , u_{31} :				~
Pst ₁₂ , Pst ₂₃ , Pst ₃₁				
Spannungs-Mitsystem, -Gegensystem, -Nullsystem	√*	√*	~	~
Spannungsunsymmetrie u _u		√*	✓	√
Spannungsunsymmetrie u ₀		√*	√	√
10ms Spannungsextremwerte pro Messintervall				~
$U_{1E/N-1/2}, U_{2E/N-1/2}, U_{3E/N-1/2}, U_{NE-1/2}, U_{12-1/2}, U_{23-1/2}, U_{31-1/2}$				
Strom-Mitsystem, -Gegensystem, -Nullsystem				
Stromunsymmetrie u _u		√*	√	~
Stromunsymmetrie u ₀		√*	~	~
10ms Stromextremwerte pro Intervall		√*	✓	✓
$ _{1-1/2}, _{2-1/2}, _{3-1/2}, _{\Sigma/N-1/2}$				

200ms Leistungsextremwerte		√
P _{1-10/12} , P _{2-10/12} , P _{3-10/12} , P _{10/12}		
Frequenzextremwerte von		✓
f (10s) und f (200ms)		
Maxima von $U_{S1-10/12}$, $U_{S2-10/12}$, $U_{S3-10/12}$, $U_{SN-10/12}$, $U_{S12-10/12}$, $U_{S23-10/12}$, $U_{S12-10/12}$, $U_{S23-10/12}$, $U_{S12-10/12}$		✓
_{10/12} , U _{S31-10/12}		

11.1 Messverfahren / Formeln multilog 2

Signalabtastung:

Die Spannungs- und Stromeingänge werden mit einem Anti-Aliasing-Filter gefiltert und mit einem 24-Bit Wandler digitalisiert. Die ADCs liefern 2048 Abtastwerte je Kanal für einen Synchronisationszyklus von 10 (50Hz-Netze) bzw. 12 (60Hz-Netze) Perioden der Phasenreferenz (TS = 200ms bei Nennfrequenz). Die Abtastrate beträgt bei der Nennfrequenz 10,24 kSamples/s.

Die Werte aller Parameter werden aus diesen Daten errechnet.

Die Aggregation der Messwerte erfolgt nach der Norm IEC61000-4-30 für Klasse A Geräte.

Effektivwerte der Spannungen und Ströme, Min- / Maximalwerte

U eff / I eff

Der Intervallwert der Spannung oder des Stroms ist der Mittelwert der Effektivwerte (RMS) über die Länge des eingestellten Intervalls.

U min / max; I min / max

Pro Messintervall wird der jeweils höchste und niedrigste 10ms Spannungs- oder Stromeffektivwert zusätzlich zum Mittelwert festgehalten.

Rundsteuersignal

U Rundsteuersignal (200ms)

Im Setup des multilog 2 kann eine beliebige Zwischenharmonische eingestellt werden. Diese wird als 200ms Maximalwert innerhalb eines Messintervalls dargestellt.

Flickerstärke Pst / Plt

Die **Kurzzeit-Flickerstärken P**_{st} (10min) und die **Langzeit-Flickerstärken Plt** (2h) werden für Stern- und Dreieckspannungen berechnet. Pst und Plt sind in der EN 61000-4-15: 2010 definiert.

Realisierungsempfehlungen sind der Quelle "EMV Messung von Spannungsschwankungen und Flickern mit dem IEC-Flickermeter" von W.Mombauer, VDE-Verlag, VDE-Schriftenreihe "Normen verständlich", ISBN 3-8007-2525-8 zu entnehmen.

Die Intervall-Länge Pst ist fest auf 10 Minuten eingestellt und ist unabhängig vom eingestellten Messintervall.

Formel zur Plt Berechnung:

$$P_{lt} = \sqrt[3]{\frac{1}{12}\sum_{i=1}^{l2}P_{st,i}^3}$$

Das Flickermeter kann im Gerätesetup für folgende Netzkonstellationen parametriert werden: 230V/50Hz; 230V/60Hz und 120V/50Hz; 120V/60Hz

THD – PWHD – K Faktor

Gesamter Oberschwingungsanteil, die Berechnung erfolgt nach folgenden Formeln gemäß IEC61000-4-7:

Die Berechnung der THD Werte der Spannungen und Ströme sind im Gerätesetup einstellbar. - H2 bis H40 (Messung nach EN50160)

- H2 bis H50 (Messung nach IEC61000-x-x)

THD Spannung:

$$THD_{u} = \frac{\sqrt{\sum_{\nu=2}^{40} U_{\nu}^{2}}}{U_{1}}$$

THD Strom in %:

$$THD_i = \frac{\sqrt{\sum_{\nu=2}^{40} I_{\nu}^2}}{I_1}$$

THD(A) Strom in Ampere:

$$THC = \sqrt{\sum_{n=2}^{40} I_n^2}$$

PWHD - Partial Weighted Harmonic Distortion

Der partiell gewichtete THD bewertet die Harmonischen der 14. bis 40. Harmonischen.

$$PWHD = \frac{\sqrt{\sum_{n=14}^{40} n \cdot C_n^2}}{C_1}$$

PHC - Partial Odd Harmonic Current

Der PHC wird aus den ungeradzahligen Stromharmonischen n = 21..39 berechnet.

$$PHC = \sqrt{\sum_{n=21,23}^{39} C_n^2}$$

K-Faktor

Die Werte der K-Faktoren werden für Leiterströme aus den entsprechenden Effektivwerten Cn der Harmonischen n = 1..40 berechnet.

K-factor ist eine Maßeinheit, welche die Fähigkeit eines Transformators angibt, den Stromharmonischen eines Systems zu widerstehen.

Verschiedene Transformatorlieferanten bieten Transformatoren mit z.B. K-Faktoren von K=4, K=13, K=20 und K=30 an.

Transformatoren werden durch Stromharmonische stärker erwärmt als mit 50Hz Strömen. Ein Transformator mit höherem K-Faktor hält diese besser aus und wird nicht so stark erwärmt als ein Transformator mit niedrigerem K-Faktor.

Das multilog 2 gibt den K-Faktor der Ströme an. Interessant sind nur die k-Werte welche bei maximaler Leistung auftreten. Ähnlich wie der THD der Ströme in % ist der Wert nicht relevant bei sehr niedrigen Strömen.

Die PQ Box 100 gibt den K-Faktor der Ströme an. Interessant sind nur die k-Werte welche bei maximaler Leistung auftreten. Ähnlich wie der THD der Ströme in % ist der Wert nicht relevant bei sehr niedrigen Strömen.

$$K = \frac{\sum_{n=1}^{40} (n \cdot C_n)^2}{\sum_{n=1}^{40} C_n^2}$$

Harmonische / Zwischenharmonische

Die Ermittlung der Harmonischen- und Zwischenharmonischen-Intervallwerte wird nach den Methoden der Norm IEC61000-4-30 Klasse A basierend auf 10/12 Periodenwerten gebildet.

Das multilog 2 erfasst für alle Spannungs- und Stromkanäle jeweils die Harmonischen bis zur 50. Ordnungszahl. Zur Bewertung der Zwischenharmonischen werden Oberschwingungs-Untergruppen gebildet. Es werden für alle Strom- und Spannungskanäle 50 Untergruppen aufgezeichnet.

Beispiel:

🖨 Ungeradzahlige Zwischenharmonische

"IHO" ist die erste Zwischenharmonischen-Gruppe und bewertet den Frequenzbereich von 5 Hz bis 45 Hz.

Es werden die Harmonischen von n=0...50 berechnet

Spannungsharmonische (normiert, 10/12 Perioden):

$$|U_{n-10/12}| = \frac{\sqrt{\frac{1}{2} \cdot \sum_{k=n \cdot N-1}^{n \cdot N+1} |C_k|^2}}{U_{nom}}$$

Stromharmonische:

$$|I_{n-10/12}| = \sqrt{\frac{1}{2} \cdot \sum_{k=n \cdot N-1}^{n \cdot N+1} |C_k|^2}$$

Blindleistung / Blindenergien

Im Setup des multilog 2 sind zwei Varianten der Leistungsberechnung einstellbar

a) Leistungsberechnung vereinfacht

Netz-Blindleistung ohne Unsymmetrie-Komponente :

$$Q = \sqrt{Q_V^2 + D^2}$$
 Q $\Sigma = Q L1 + Q L2 + Q L3$

b) Messung nach DIN40110 Teil 2

Blindleistung inklusive der Unsymmetrieblindleistung: Blindleistung:

$$Q_{L-10/12} = Sgn(\varphi_{L-10/12}) \cdot \sqrt{S_{L-10/12}^2 - P_{L-10/12}^2}$$
$$Q_{10/12} = Sgn(\varphi_{1-10/12}) \cdot \sqrt{S_{10/12}^2 - P_{10/12}^2}$$

Blindenergie:

"Blindenergie Lieferung" induktiven Blindenergien +EQ:

$$Q_{s}(n) = |Q_{L-10/12}(n)| \qquad \qquad f \ddot{u}r : Q_{L-10/12}(n) \ge 0$$
$$Q_{s}(n) = 0 \qquad \qquad f \ddot{u}r : Q_{L-10/12}(n) < 0$$

"Blindenergie Verbrauch" kapazitive Blindenergien -EQ:

$$Q_{s}(n) = |Q_{L-10/12}(n)| \qquad \qquad f \ddot{u}r : Q_{L-10/12}(n) < 0$$

Verzerrungsblindleistungen - D

Die Verzerrungsblindleistung - auch Oberschwingungsblindleistung genannt - beschreibt eine spezielle Form der Blindleistung, die in Wechsel- und Drehstromnetzen durch nichtlineare Verbraucher wie zum Beispiel Gleichrichter in Netzteilen verursacht wird. Die Oberschwingungen des Stromes in Kombination mit der Netzspannung ergeben Blindleistungsanteile, die als Verzerrungsblindleistungen bezeichnet werden.

Die Verzerrungsblindleistungen werden aus den Spannungen und den zugehörigen Verzerrungsströmen berechnet

$$D = U \cdot \sqrt{\sum_{\nu=2}^{\infty} I_{\nu}^{2}}$$

Leistungsfaktor – Power Faktor PF

Als Leistungsfaktor, Wirkleistungsfaktor oder auch Wirkfaktor bezeichnet man in der Elektrotechnik das Verhältnis von Wirkleistung P zur Scheinleistung S. Der Leistungsfaktor kann zwischen 0 und 1 liegen.

Das Verhältnis wird in folgender Formel ausgedrückt:

Leistungsfaktor (Power Faktor PF): λ_{μ} Lamda" = IPI / S

Scheinleistungen - S

Im Setup des multilog 2 sind zwei Varianten der Leistungsberechnung einstellbar

a) Leistungsberechnung vereinfacht

Netz-Scheinleistung ohne Unsymmetrie-Komponente:

$$S = \sqrt{P^2 + Q^2}$$

b) Netzscheinleistung inkl. Netzunsymmetrie nach DIN40110 Teil 2

Strang-Scheinleistungen 4-Leiter-System :

$$S_L = U_{LNrms} \cdot I_{Lrms}$$

Strang-Scheinleistungen 3-Leiter-System :

$$S_L = U_{L0rms} \cdot I_{Lrms}$$

Kollektive Scheinleistung n. DIN40110 :

$$S_{\Sigma} = U_{\Sigma} \cdot I_{\Sigma}$$

$$U_{\Sigma} = \frac{1}{2} \cdot \sqrt{U_{12rms}^2 + U_{23rms}^2 + U_{31rms}^2 + U_{1Nrms}^2 + U_{2Nrms}^2 + U_{3Nrms}^2}$$

4-Leiter-Netz :

$$I_{\Sigma} = \sqrt{I_{1rms}^2 + I_{2rms}^2 + I_{3rms}^2 + I_{Nrms}^2}$$

3-Leiter-Netz, $11 + 12 + 13 \neq 0$:

$$U_{\Sigma} = \frac{1}{2} \cdot \sqrt{U_{12rms}^2 + U_{23rms}^2 + U_{31rms}^2 + U_{1Erms}^2 + U_{2Erms}^2 + U_{3Erms}^2}$$

$$I_{\Sigma} = \sqrt{I_{1rms}^2 + I_{2rms}^2 + I_{3rms}^2 + I_{Erms}^2}$$

Geometrische Grundschwingungs-Scheinleistung :

$$S_{G} = 3 \cdot [U_{1_{-}PS} \cdot L_{1_{-}PS}^{*} + U_{1_{-}NS} \cdot L_{1_{-}NS}^{*} + U_{1_{-}ZS} \cdot L_{1_{-}ZS}^{*}]$$

Wirkleistung - P

Die Vorzeichen der Wirkleistungen entsprechen der Flussrichtung der Grundschwingungs-Wirkenergie (+ : Abgabe, - : Bezug).

Die Werte der Strang-Wirkleistungen werden aus den Abtastwerten eines Synchronisationszyklusses errechnet.

$$P_{L-10/12} = \frac{\sum_{n=1}^{2048} p_L(n)}{2048}$$

(200ms Werte) mit Strangindex $L = \{1, 2, 3, E\}$

Die 10min-Werte werden als lineare Mittelwerte errechnet.

Die kollektive Wirkleistung ist für 4-Leiter-Systeme definiert mit

$$P_{\Sigma} = P_1 + P_2 + P_3$$

Die kollektive Wirkleistung ist für 3-Leiter-Systeme definiert mit

$$P_{\Sigma} = P_1 + P_2 + P_3 + P_E$$

Grundschwingungs-Wirkleistung (Leitung):

$$P_G = \operatorname{Re}\{\underline{S}_G\}$$

S_G = Geometrische Grundschwingungs-Scheinleistung

Symmetrische Komponenten

Die komplexen symmetrischen Komponenten werden aus den entsprechenden komplexen Spektralkomponenten der Grundschwingungen der Sternspannungen und Leiterströme errechnet.

Sternspannung im 4-Leiter-System = Spannung Außenleiter-Neutralleiter

Sternspannung im 3-Leiter-System = Spannung Außenleiter-Erde

Mitsystem :

$$\underline{U}_{1_{PS}} = \frac{1}{3} \cdot \left(\underline{U}_{1N-1} + \underline{a} \cdot \underline{U}_{2N-1} + \underline{a}^2 \cdot \underline{U}_{3N-1} \right)$$
$$\underline{I}_{1_{PS}} = \frac{1}{3} \cdot \left(\underline{I}_{1-1} + \underline{a} \cdot \underline{I}_{2-1} + \underline{a}^2 \cdot \underline{I}_{3-1} \right)$$

Gegensystem :

$$\underline{U}_{1_{-NS}} = \frac{1}{3} \cdot \left(\underline{U}_{1N-1} + \underline{a}^2 \cdot \underline{U}_{2N-1} + \underline{a} \cdot \underline{U}_{3N-1} \right)$$

$$\underline{I}_{1_{-NS}} = \frac{1}{3} \cdot \left(\underline{I}_{1N-1} + \underline{a}^2 \cdot \underline{I}_{2N-1} + \underline{a} \cdot \underline{I}_{3N-1} \right)$$

Nullsystem :

$$\underline{U}_{ZS} = \frac{1}{3} \cdot \left(\underline{U}_{1N-1} + \underline{U}_{2N-1} + \underline{U}_{3N-1} \right)$$

$$\underline{I}_{ZS} = \frac{1}{3} \cdot \left(\underline{I}_{1N-1} + \underline{I}_{2N-1} + \underline{I}_{3N-1} \right)$$

UU Unsymmetrie

Die Spannungsunsymmetrien werden aus den entsprechenden Werten der modalen Komponenten Mitsystem, Gegensystem und Nullsystem errechnet.

Für die EN50160 (Ereignisse) ist nur die Spannungsunsymmetrie uu relevant und entspricht dem Verhältnis von Gegensystem zu Mitsystem. Der Wert wird in [%] ausgegeben.

12. Wartung / Reinigung

Dieses Gerät ist für Kunden Wartungsfrei.

Lebensgefahr durch Stromschlag!
 ^(*) Gerät nicht öffnen.
 ^(*) Wartung des Geräts ausschließlich durch KBR durchführen lassen.

Bei Servicefällen KBR kontaktieren.

Serviceadresse: Putty + Gausmann GmbH Kiebitzheide 39 D-49084 Osnabrück

Verwenden Sie ein weiches, leicht angefeuchtetes und fusselfreies Tuch. Achten Sie darauf, dass keine Feuchtigkeit in das Gehäuse eindringt. Verwenden Sie keine Fensterreiniger, Haushaltsreiniger, Sprays, Lösungsmittel, alkoholhaltige Reiniger, Ammoniaklösungen oder Scheuermittel für die Reinigung.

13. Normen und Gesetze

14. Entsorgung

Zur Entsorgung des Geräts und des Zubehörs, alle Komponenten an KBR schicken.

15. Produktgewährleistung

KBR gewährleistet, dass dieses Produkt und Zubehör für die Dauer von drei Jahren ab dem Kaufdatum frei von Material- und Fertigungsdefekten bleibt. Diese Gewährleistung gilt nicht für Schäden durch Unfälle, Missbrauch und abnormalen Betriebsbedingungen.

Um die Garantieleistung in Anspruch zu nehmen, kontaktieren Sie die KBR Kompensationsanlagenbau GmbH in Schwabach.

KBR Kompensationsanlagenbau GmbH

Am Kiefernschlag 7 D-91126 Schwabach T +49 (0) 9122 6373-0 F +49 (0) 9122 6373-83 E info@kbr.de www.kbr.de